Practice Advisory for the Prevention, Diagnosis, and Management of Infectious Complications Associated with Neuraxial Techniques

An Updated Report by the American Society of Anesthesiologists Task Force on Infectious Complications Associated with Neuraxial Techniques and the American Society of Regional Anesthesia and Pain Medicine

PRACTICE advisories are systematically developed reports that are intended to assist decision-making in areas of patient care. Advisories provide a synthesis of scientific literature and analysis of expert opinion, clinical feasibility data, open forum commentary, and consensus surveys. Practice advisories developed by the American Society of Anesthesiologists (ASA) are not intended as standards, guidelines, or absolute requirements, and their use cannot guarantee any specific outcome. They may be adopted, modified, or rejected according to clinical needs and constraints, and they are not intended to replace local institutional policies.

Practice advisories summarize the state of the literature and report opinions obtained from expert consultants and ASA members. They are not supported by scientific literature to the same degree as standards or guidelines because of the lack of sufficient numbers of adequately controlled studies. Practice advisories are subject to periodic revision as warranted by the evolution of medical knowledge, technology, and practice.

This document updates the “Practice Advisory for the Prevention, Diagnosis, and Management of Infectious Complications Associated with Neuraxial Techniques by the ASA Task Force on Infectious Complications Associated with Neuraxial Techniques,” adopted by ASA in 2009 and published in 2010.†

Methodology

Definition of Infectious Complications Associated with Neuraxial Techniques

For this Advisory, infectious complications are defined as serious infections associated with the use of neuraxial techniques. Neuraxial techniques include, but are not limited to, epidural, spinal, or combined spinal-epidural administration of anesthetics, analgesics, or steroids; lumbar puncture/spinal tap; epidural blood patch; epidural lysis of adhesions; intrathecal chemotherapy; epidural or spinal injection of contrast agents for imaging; lumbar/spinal drainage catheters; or spinal cord stimulation trials. Infectious complications include, but are not limited to, epidural, spinal, or subdural abscess; paravertebral, paraspinous, or psoas abscess; meningitis; encephalitis; sepsis; bacteremia; viremia; fungemia; osteomyelitis; or discitis. Although colonization of the catheter is not considered an infection, it may be considered a precursor to infection, and is reported as an outcome in this Advisory.

Purpose of the Advisory

The purposes of this updated Advisory are to reduce the risk of infectious complications associated with neuraxial techniques by identifying or describing: (1) patients who are at increased risk of infectious complications, (2) techniques for reducing
Focus
This updated Advisory focuses on patients receiving neuraxial techniques. The practice settings include inpatient (e.g., operating rooms, intensive care units, postoperative surgical floors, labor and delivery settings, or hospital wards) and ambulatory facilities such as pain clinics.

This updated Advisory does not address patients with implantable drug or chronic indwelling neuraxial analgesic delivery systems or injection techniques outside of the neuraxis (e.g., peripheral nerve blocks or joint and bursal injections).

Application
This updated Advisory is intended for use by anesthesiologists and other physicians and health care providers performing neuraxial techniques. The Advisory may also serve as a resource for other health care providers involved in the management of patients who have undergone neuraxial procedures.

Task Force Members and Consultants
In 2015, the ASA Committee on Standards and Practice Parameters requested that scientific evidence for this Advisory be updated. The update consists of an evaluation of literature that includes new studies obtained after publication of the original Advisory.

The original Advisory was developed by an ASA-appointed Task Force of 10 members, including anesthesiologists in both private and academic practice from various geographic areas of the United States and two consulting methodologists from the ASA Committee on Standards and Practice Parameters.

The Task Force developed the original Advisory by means of a seven-step process. First, they reached consensus on the criteria for evidence. Second, a systematic review and evaluation was performed on original published research studies from peer-reviewed journals relevant to infectious complications associated with neuraxial techniques. Third, a panel of expert consultants was asked to participate in opinion surveys on the effectiveness of various strategies for prevention, diagnosis, and management of infectious complications associated with neuraxial techniques, and to review and comment on a draft of the Advisory. Fourth, opinions about the Advisory were solicited from a random sample of active members of the ASA. Fifth, the Task Force held open forums at four major national meetings to solicit input on its draft advisory statements. Sixth, the consultants were surveyed to assess their opinions on the feasibility of implementing the Advisory. Seventh, all available information was used to build consensus within the Task Force to formulate the final document. A summary of recommendations is found in appendix 1.

Availability and Strength of Evidence
Preparation of this update used the same methodological process as was used in the original Advisory to obtain new scientific evidence. Opinion-based evidence obtained from the original Advisory is reported in this update. The protocol for reporting each source of evidence is described below.

Scientific Evidence. Scientific evidence used in the development of this updated Advisory is based on cumulative findings from literature published in peer-reviewed journals. Literature citations are obtained from health care databases, direct Internet searches, Task Force members, liaisons with other organizations, and manual searches of references located in reviewed articles.

Findings from the aggregated literature are reported in the text of the updated Advisory by evidence category, level, and direction. Evidence categories refer specifically to the strength and quality of the research design of the studies. Category A evidence represents results obtained from randomized controlled trials (RCTs) and Category B evidence represents observational results obtained from nonrandomized study designs or RCTs without pertinent comparison groups. When available, Category A evidence is given precedence over Category B evidence for any particular outcome. These evidence categories are further divided into evidence levels. Evidence levels refer specifically to the strength and quality of the summarized study findings (i.e., statistical findings, type of data, and the number of studies). In this document, only the highest level of evidence is included in the summary report for each intervention-outcome pair, including a directional designation of benefit, harm, or equivocality for each outcome.

Category A. RCTs report comparative findings between clinical interventions for specified outcomes. Statistically significant (P < 0.01) outcomes are designated as either beneficial (B) or harmful (H) for the patient; statistically nonsignificant findings are designated as equivocal (E).

Level 1: The literature contains a sufficient number of RCTs to conduct meta-analysis, and meta-analytic findings from these aggregated studies are reported as evidence.

Level 2: The literature contains multiple RCTs, but the number of RCTs is not sufficient to conduct a viable meta-analysis. Findings from these RCTs are reported separately as evidence.

‡ American Society of Regional Anesthesia, Huntington Beach, California, November 22, 2008; Postgraduate Assembly in Anesthesiology, New York, New York, December 13, 2008; American Society of Regional Anesthesia, Phoenix, Arizona, May 1, 2009; Society of Obstetrical Anesthesia and Perinatology, Washington, DC, May 1, 2009.

§ All meta-analyses are conducted by the ASA methodology group. Meta-analyses from other sources are reviewed but not included as evidence in this document.
Level 3: The literature contains a single RCT and findings are reported as evidence.

Category B. Observational studies or RCTs without pertinent comparison groups may permit inference of beneficial or harmful relationships among clinical interventions and clinical outcomes. Inferred findings are given a directional designation of beneficial (B), harmful (H), or equivocal (E). For studies that report statistical findings, the threshold for significance is \(P < 0.01 \).

Level 1: The literature contains observational comparisons (e.g., cohort, case-control research designs) with comparative statistics between clinical interventions for a specified clinical outcome.

Level 2: The literature contains noncomparative observational studies with associative statistics (e.g., relative risk, correlation, sensitivity/specificity).

Level 3: The literature contains noncomparative observational studies with descriptive statistics (e.g., frequencies, percentages).

Level 4: The literature contains case reports.

Insufficient Literature. The lack of sufficient scientific evidence in the literature may occur when the evidence is either unavailable (i.e., no pertinent studies found) or inadequate. Inadequate literature cannot be used to assess relationships among clinical interventions and outcomes because a clear interpretation of findings is not obtained due to methodological concerns (e.g., confounding of study design or implementation) or the study does not meet the inclusion criteria for content as defined in the “Focus” of the Advisory.

Opinion-based Evidence. All opinion-based evidence (e.g., survey data, open-forum testimony, Internet-based comments, letters, and editorials) relevant to each topic was considered in the development of this updated Advisory. However, only the findings obtained from formal surveys are reported in the current update.

Opinion surveys were developed to address each clinical intervention identified in the document. Identical surveys were distributed to expert consultants and a random sample of ASA members.

Category A: Expert Opinion. Survey responses from Task Force–appointed expert consultants are reported in summary form in the text, with a complete listing of consultant survey responses reported in a table in appendix 2.

Category B: Membership Opinion. Survey responses from a random sample of active members of the ASA are reported in summary form in the text, with a complete listing of responses reported in appendix 2.

Survey responses from expert and membership sources are recorded using a 5-point scale and summarized based on median values.**

When an equal number of categorically distinct responses are obtained, the median value is determined by calculating the arithmetic mean of the two middle values. Ties are calculated by a predetermined formula.

Strongly Agree: Median score of 5 (at least 50% of the responses are 5)

Agree: Median score of 4 (at least 50% of the responses are 4 or 4 and 5)

Equivocal: Median score of 3 (at least 50% of the responses are 3, or no other response category or combination of similar categories contain at least 50% of the responses)

Disagree: Median score of 2 (at least 50% of responses are 2 or 1 and 2)

Strongly Disagree: Median score of 1 (at least 50% of responses are 1)

Category C: Informal Opinion. Open-forum testimony obtained during development of the original Advisory, Internet-based comments, letters, and editorials are all informally evaluated and discussed during the formulation of Advisory statements. When warranted, the Task Force may add educational information or cautionary notes based on this information.

Advisories

Prevention of Infectious Complications Associated with Neuraxial Techniques

Topics addressed with regard to the prevention of infectious complications related to neuraxial techniques are as follows: (1) conducting a history, physical examination and preprocedure laboratory evaluation, (2) use and selection of neuraxial technique, (3) prophylactic antibiotic therapy, (4) physician use of aseptic techniques, (5) selection of antiseptic solution, (6) use of individual antiseptic packets, (7) use of sterile occlusive dressings at the catheter insertion site, (8) use of a bacterial filter during continuous epidural infusion, (9) limiting disconnection and reconnection of neuraxial delivery systems, (10) management of an accidentally disconnected catheter, and (11) limiting the duration of catheterization.

Advisory statements for the above topics are reported below after descriptions of the evidence for all eleven topics.

History, Physical Examination, and Preprocedure Laboratory Evaluation.

Literature findings. Although no controlled trials were found that addressed the impact of conducting a focused history (e.g., reviewing medical records), a physical examination, or a preprocedure laboratory evaluation, several studies with observational findings suggest that certain patient or clinical characteristics (e.g., cancer, diabetes, and impaired immune response) may be associated with neuraxial-related infections (Category B3-H evidence). In addition, case reports indicate that preexisting infections, pancreatitis, gastrointestinal bleeding, drug or alcohol abuse may also be associated with neuraxial-related infections (Category B4-H evidence).

Survey findings. Both the consultants and ASA members strongly agree that a history, physical examination, and review of relevant laboratory studies should be conducted prior to performing neuraxial techniques. The consultants agree and ASA members strongly agree that before performing...
neuraxial techniques, a history, physical examination, and review of relevant laboratory studies is useful in identifying patients at increased risk of infectious complications.

Selection of Neuraxial Technique. The risk of developing infectious complications associated with specific neuraxial techniques is addressed by making the following comparisons: (1) epidural versus spinal techniques, (2) continuous infusion/catheter versus single injection techniques, (3) lumbar epidural versus thoracic epidural techniques, and (4) lumbar epidural versus caudal techniques.

Literature findings. No RCTs were found that reported differences between specific neuraxial techniques regarding infectious complications. One nonrandomized comparative study reports no significant differences in bacterial contamination of needles when epidural lumbar puncture is compared with spinal lumbar puncture (Category B1-E evidence). The literature is insufficient to evaluate differences in infectious complications between continuous infusion/catheter and single injection techniques. One case control study found no differences in epidural catheter infections when the lumbar insertion technique is compared with the thoracic insertion technique (Category B1-E evidence). Three nonrandomized comparative studies report no statistically significant (P > 0.01) differences in bacterial colonization of the catheter tip when the lumbar insertion site is compared with the caudal insertion site (Category B1-E evidence).

Survey findings. Both the consultants and ASA members strongly agree that, for patients at risk of infectious complications, the decision to select a neuraxial technique should be determined on a case-by-case basis. The consultants agree and ASA members strongly agree that, for these patients, alternatives to neuraxial techniques should be considered. Moreover, both the consultants and ASA members strongly agree that the evolving medical status of the patient should be considered in the selection of neuraxial technique. Both the consultants and ASA members strongly agree that a lumbar puncture should be avoided in a patient with a known epidural abscess.

Prophylactic Antibiotic Therapy.

Literature findings. The literature is insufficient to assess whether prophylactic antibiotic therapy for known or suspected bacteremic patients reduces the risk of infectious complications associated with neuraxial techniques. Case reports indicate that infectious complications in these patients may still occur even when prophylactic antibiotic therapy is administered (Category B4-E evidence). Additional findings reported in this study comparing chlorhexidine with alcohol or povidone-iodine with alcohol versus these disinfectants alone are also equivocal (Category A3-E evidence). Findings of other RCTs are inconsistent regarding the rate of positive bacteriologic cultures when chlorhexidine with alcohol is compared with povidone-iodine without alcohol (Category A2-B evidence).

Survey findings. The consultants indicate a preference for chlorhexidine with alcohol as a skin preparation solution prior to performing a neuraxial technique, while the ASA members indicate no clear preference for chlorhexidine with or without alcohol, or povidone-iodine with or without alcohol.

Use of Individual Antiseptic Packets.

Literature findings. Although the literature is insufficient regarding whether the use of individual antiseptic packets compared with multiple-use bottles of antiseptic reduces infectious complications, an observational study reports no microbial contamination when unopened multiple-use bottles of povidone-iodine are used, compared to evidence of contamination found with previously opened multiple-use bottles (Category B1-B evidence). A case report indicated lumbar spondylodiscitis occurring in a patient whose skin was cleansed with povidone-iodine obtained from a multiple-use bottle (Category B4-H evidence).
Survey findings. Both the consultants and ASA members strongly agree that individual packets of skin preparation should always be used.

Use of Sterile Occlusive Dressings at the Catheter Insertion Site.

Literature findings. No comparative studies were found that indicate whether the use of sterile occlusive dressings at the catheter insertion site reduces infectious complications. Observational studies indicate that positive cultures may still occur with the use of sterile occlusive dressings (Category B4-E evidence).

Survey findings. Both the consultants and ASA members strongly agree that sterile occlusive dressings should be used at the catheter insertion site.

Use of a Bacterial Filter during Continuous Epidural Infusion.

Literature findings. No comparative studies were found that indicates whether the use of bacterial filters reduce infectious complications. One nonrandomized comparative study found that use of a bacterial filter during continuous epidural infusion does not reduce the number of positive cultures distal to the filter (Category B1-E evidence).

Studies with observational findings indicate that bacterial colonization may still occur in the presence of micropore filters (Category B2-E evidence). In addition, case reports indicate that infectious complications (e.g., epidural abscess) may still occur in the presence of bacterial filters (Category B4-E evidence).

Survey findings. The ASA members agree and the consultants are uncertain regarding whether bacterial filters should be used during continuous epidural infusion.

Limiting Disconnection and Reconnection of Neuraxial Delivery Systems.

Literature findings. The literature is insufficient to evaluate whether limiting disconnection or reconnection of neuraxial delivery systems are associated with reduced frequency of infectious complications.

Survey findings. Both the consultants and ASA members strongly agree that disconnection and reconnection of neuraxial delivery systems should be limited in order to minimize the risk of infectious complications.

Management of an Accidentally Disconnected Catheter.

Literature findings. The literature is insufficient to evaluate whether removal of an accidentally disconnected catheter is associated with reduced frequency of infectious complications.

Survey findings. ASA members are equivocal and the consultants disagree that accidentally disconnected catheters should be immediately removed. However, the Task Force believes that, in order to avoid infectious complications, an unwatched accidentally disconnected catheter should be removed.

Limiting the Duration of Catheterization.

Literature findings. No comparative studies were found that indicate whether longer duration of catheterization is associated with increased frequency of infectious complications. Studies with observational findings indicate that infections and epidural abscesses may occur in the presence of longer durations (Category B3-H evidence) and case reports corroborate these findings (Category B4-H evidence).

No literature was found that identified a specific duration of catheterization associated with an increased risk of infectious complications.

Survey findings. Both the consultants and ASA members strongly agree that catheters should not remain in situ longer that clinically necessary.

Advisory Statements for Prevention

• Before performing neuraxial techniques, conduct a history and physical examination relevant to the procedure and review relevant laboratory studies in order to identify patients who may be at risk of infectious complications.

• Consider alternatives to neuraxial techniques for patients at high risk.

• When neuraxial techniques are selected in a known or suspected bacteremic patient, consider administering preprocedure antibiotic therapy.

• Select neuraxial technique on a case-by-case basis, including a consideration of the evolving medical status of the patient.

• Avoid lumbar puncture in the patient with a known epidural abscess.

• Use aseptic techniques during preparation of equipment (e.g., ultrasound) and the placement of neuraxial needles and catheters, including:
 o Removal of jewelry (e.g., rings and watches)
 o Hand washing
 o Wearing of caps
 o Wearing of masks covering both mouth and nose — Consider changing masks before each new case.
 o Use of sterile gloves
 o Sterile draping of the patient

• Use individual packets of antiseptics for skin preparation.

• Use an antiseptic solution (e.g., chlorhexidine with alcohol) for skin preparation, allowing for adequate drying time.

†† The Centers for Disease Control and Prevention and the American Society of Regional Anesthesia and Pain Medicine have also published recommendations regarding asepsis and management of patients undergoing neuraxial techniques. These are available at the CDC (http://www.cdc.gov/ncidod/dhqp/injectionSafetyPractices.html) and ASRA (http://www.asra.com/consensus-statements/4.html) web sites.

§§ Consult product labels for instructions regarding the proper use, application, and drying time for skin antiseptics.
Periodically Checking Patients’ Neurologic Function.

Literature findings. Case reports indicate that neurologic deficits (e.g., motor and sensory loss and paraplegia) may indicate the presence of infectious complications (Category B4-B evidence). \(^9,14,29,108,110,117,126,128,132,144\)

Survey findings. Both the consultants and ASA members strongly agree that, if an abscess is suspected or neurologic deficit is present, consultation with other appropriate specialties should be promptly obtained.

Ordering Blood Tests.

Literature findings. Numerous case reports indicate that blood tests (e.g., white blood cell counts, sedimentation rates, and C-reactive protein) may be useful in identifying infection (Category B4-B evidence). \(^3,13,14,22,23,29,31,45,46,57–60,62–64,70–72,89,103,108,113,115,118,120,122,123,125,126,129,130,132,133,137,140,142\)

Survey findings. Both consultants and ASA members agree that, if an infection is suspected, blood tests should be ordered.

Ordering a Culture or Cerebral Spinal Fluid Analysis.

Literature findings. Studies with observational findings indicate that cultures (e.g., blood, skin, abscess, or cerebrospinal fluid) can be useful in identifying the causal agent (e.g., viral, bacterial, or fungal) of the infectious complication (Category B3-B evidence). \(^4,9,52,82,94–96,106,145–150\) Case reports indicate similar outcomes (Category B4-B evidence). \(^13–15,18–21,23–25,29–31,41,43–46,53,54,57,60,62–67,71–73,81,87–99,94–101,103–108,110,112,113,115,117–119,121–127,129–134,136,137,139–144,151–155\)

Survey findings. Both the consultants and ASA members agree that if an infection is suspected, the catheter tip should be cultured. In addition, they both agree that additional cultures should be obtained.

Ordering Imaging Studies.

Literature findings. Studies with observational findings indicate that conducting magnetic resonance imaging, computed tomography, or myelography may be useful in identifying infectious complications (e.g., epidural abscess, discitis, and osteomyelitis) (Category B3-B evidence). \(^9,156,157\) Case reports indicate similar outcomes (Category B4-B evidence). \(^13–15,19,21,22,25,29,31,32,53,54,59,60,62–65,70,71,81,87,88,90,99,101,103,108–110,113,115–122,126–129,132–134,138,140,142–144,155,158–169\)

Survey findings. Both the consultants and ASA members strongly agree that, if an abscess is suspected and a neurologic deficit is present, imaging studies should be performed.

Advisory Statements for Diagnosis

- **Perform daily evaluation of patients with indwelling catheters for early signs and symptoms (e.g., fever, backache, headache, erythema, and tenderness at the insertion site) of infectious complications throughout their stay in the facility.**

*** For diagnostic studies, the “B” referring to patient benefit indicates that the disorder may be detectable using the stated diagnostic intervention.

††† Immunocompromised patients may not manifest typical signs and symptoms of infection.
To minimize the impact of an infectious complication, promptly attend to signs or symptoms.

If an infection is suspected:
- Remove an in-situ catheter and consider culturing the catheter tip.
- Order appropriate blood tests.
- Obtain appropriate cultures.
- If an abscess is suspected or neurologic dysfunction is present, perform imaging studies and promptly obtain consultation with other appropriate specialties.

Management of Infectious Complications
Topics addressed with regard to management or treatment of infectious complications include: (1) administration of antibiotics, (2) collaboration with appropriate specialists to determine optimal nonsurgical treatment, and (3) collaboration with a surgeon to determine whether surgical intervention or percutaneous drainage is necessary.

Administration of Antibiotics.

Literature findings. Case reports indicate that appropriate antibiotic therapy may be an effective treatment for infections (Category B4-B evidence).22,25, 29–31,45,46,53,54,57–60, 62,65,66,72,89,101,102,110,112,113,116,117,119,120,122,124–126,129,131,134, 136–142,144,155,164,170,171 Survey findings. Both the consultants and ASA members strongly agree that appropriate antibiotic therapy should always be administered at the earliest sign or symptom of a serious infection.

Collaboration with Appropriate Medical Specialists to Determine Optimal Treatment.

Literature findings. The literature is insufficient to evaluate the impact of collaborating with appropriate medical specialists. A retrospective analysis of 57 cases of spinal epidural abscess reported that the use of either antibiotic therapy, percutaneous drainage, or surgical interventions were equally as effective regarding patient recovery (Category B1-B evidence).172 The Task Force believes that consultation with a physician with expertise in the diagnosis and treatment of infectious diseases should be considered. However, the Task Force recognizes that, even with prompt medical intervention, recovery may be poor or incomplete.

Survey findings. The consultants agree and ASA members strongly agree that a specialist or physician with expertise in the diagnosis and treatment of infectious diseases should be consulted at the first sign of a serious infection.

Collaboration with a Surgeon to Determine Whether Surgical Intervention Is Warranted.

Literature findings. No controlled studies were found that reported differences in neurologic outcome associated with either percutaneous drainage or surgical interventions. Case reports indicate that percutaneous drainage of an abscess may be effective in resolution of symptoms (Category B4-B evidence).13,100,173 Case reports also indicate that surgical interventions (e.g., surgical drainage of an abscess, debridement, laminectomy) for an abscess may result in improved neurologic function, although in some cases motor or sensory deficits may persist (Category B4-B evidence).14,20,21,23,29,31,60,63–65,67,70,71, 81,87,88, 90,99,115,118,123,128,129,133,134,143,144,169,174

Survey findings. Both the consultants and ASA members strongly agree that, if an abscess is present, surgical consultation should be obtained to determine whether percutaneous drainage of the abscess or surgery (e.g., laminectomy) is warranted.

Advisory Statements for Management

- Administer appropriate antibiotic therapy at the earliest sign or symptom of a serious neuraxial infection.
- Consider consultation with a physician with expertise in the diagnosis and treatment of infectious diseases.
- If an abscess is present, obtain surgical consultation to determine whether percutaneous drainage of the abscess or surgery (e.g., laminectomy) is warranted.

Appendix I: Summary of Advisory Statements
Prevention of Infectious Complications Associated with Neuraxial Techniques

- Before performing neuraxial techniques, conduct a history and physical examination relevant to the procedure and review relevant laboratory studies† in order to identify patients who may be at risk of infectious complications.
- Consider alternatives to neuraxial techniques for patients at high risk.
- When neuraxial techniques are selected in a known or suspected bacteremic patient, consider administering preprocedure antibiotic therapy.
- Select neuraxial technique on a case-by-case basis, including a consideration of the evolving medical status of the patient.
- Avoid lumbar puncture in the patient with a known epidural abscess.
- Use aseptic techniques during preparation of equipment (e.g., ultrasound) and the placement of neuraxial needles and catheters, including:

* Ordering, conducting, or requiring routine laboratory studies may not be necessary.
† The Centers for Disease Control and Prevention and the American Society of Regional Anesthesia and Pain Medicine have also published recommendations regarding asepsis and management of patients undergoing neuraxial techniques. These are available at the CDC (http://www.cdc.gov/ncidod/dhqp/injectionSafetyPractices.html) and ASRA (http://www.asra.com/consensus-statements/3.html) Web sites.

Anesthesiology 2017; 126:585-601

Copyright © 2017, the American Society of Anesthesiologists, Inc. Wolters Kluwer Health Inc. Unauthorized reproduction of this article is prohibited.
Practice Advisory

- Removal of jewelry (e.g., rings and watches)
- Hand washing
- Wearing of caps
- Wearing of masks covering both mouth and nose
 - Consider changing masks before each new case.
- Use of sterile gloves
- Sterile draping of the patient
- Use individual packets of antiseptics for skin preparation.
- Use an antiseptic solution (e.g., chlorhexidine with alcohol) for skin preparation, allowing for adequate drying time.†
- Use sterile occlusive dressings at the catheter insertion site.
- Bacterial filters may be considered during extended continuous epidural infusion.
- Limit the disconnection and reconnection of neuraxial delivery systems in order to minimize the risk of infectious complications.
- Consider removing unwitnessed accidentally disconnected catheters.
- Catheters should not remain in situ longer than clinically necessary.

Diagnosis of Infectious Complications Associated with Neuraxial Techniques

- Perform daily evaluation of patients with indwelling catheters for early signs and symptoms (e.g., fever, backache, headache, erythema, and tenderness at the insertion site) of infectious complications throughout their stay in the facility.§
- To minimize the impact of an infectious complication, promptly attend to signs or symptoms.
- If an infection is suspected:
 - Remove an in situ catheter and consider culturing the catheter tip.
 - Order appropriate blood tests.
 - Obtain appropriate cultures.
 - If an abscess is suspected or neurologic dysfunction is present, perform imaging studies and promptly obtain consultation with other appropriate specialties.

Management of Infectious Complications

- Administer appropriate antibiotic therapy at the earliest sign or symptom of a serious neuraxial infection.
- Consider consultation with a physician with expertise in the diagnosis and treatment of infectious diseases.
- If an abscess is present, obtain surgical consultation to determine whether percutaneous drainage of the abscess or surgery (e.g., laminectomy) is warranted.

Appendix 2: Methods and Analyses

For this updated Advisory, a systematic review of studies used in the development of the original Advisory was combined with a systematic review of studies published subsequent to ASA approval in 2010. Both the systematic literature review and opinion data are based on evidence linkages, or statements regarding potential relationships between prevention, diagnosis, or management interventions and infectious complications.* Interventions listed in the evidence model below were examined to assess their impact on outcomes related to infectious complications associated with neuraxial techniques.

Evidence Model

Patients

Inclusion criteria:
- Patients receiving neuraxial techniques
- Patients at increased risk of infectious complications
- Hospital inpatients (e.g., operating rooms, intensive care units, postoperative surgical floors, labor and delivery settings, hospital wards)
- Patients in ambulatory care facilities (e.g., pain clinics)

Exclusion criteria:
- Patients with implantable drug delivery systems
- Patients with chronic indwelling neuraxial analgesic delivery systems

Procedures

Inclusion criteria:
- Inpatient and ambulatory procedures requiring neuraxial administration
 - Epidural techniques
 - Spinal techniques
 - Combined spinal-epidural techniques
 - Lumbar puncture or spinal tap
 - Epidural blood patch
 - Epidural lysis of adhesions
 - Spinal injection of contrast agents for imaging
 - Lumbar or spinal drainage catheters
 - Spinal cord stimulation trials
- Neuraxial drugs
 - Anesthetics
 - Analgesics
 - Steroids
 - Intrathecal chemotherapy

† Consult product labels for instructions regarding the proper use, application, and drying time for skin antiseptics.
§ Immunocompromised patients may not manifest typical signs and symptoms of infection.
* Unless otherwise specified, outcomes for the listed interventions refer to the occurrence of infectious complications.
Exclusion criteria:
- Injection techniques outside the neuraxis (e.g., peripheral nerve blocks, joint and bursal injections)

Interventions
Identification of patients at increased risk of infectious complications (e.g., coexisting infections, diabetes, cancer, arthritis, trauma):
- Medical records review (focused history)
- Physical examination
- Preprocedure laboratory evaluation

Prevention of infectious complications:
- Prophylactic antibiotic therapy (vs. no antibiotic therapy) in the known or suspected bacteremic or immunocompromised patient
 - Occlusive dressings
 - Individual packets versus multiple-use bottles of antiseptic
 - Aseptic preparation

Physician aseptic techniques during neuraxial procedures (e.g., hand washing, sterile gowns, gloves, and drapes, wearing of caps and masks):
- Chlorhexidine (Hibiclens) versus Povidone iodine (Betadine)
- Aseptic preparation with versus without alcohol

Neuraxial techniques:
- Epidural versus spinal techniques
- Continuous infusion epidural versus single injection epidural
- Lumbar epidural versus thoracic epidural techniques
- Lumbar versus caudal techniques

Neuraxial delivery:
- Long duration of catheterization (trend data or > 5 days duration of catheterization)
- Limit disconnection and reconnection of neuraxial delivery systems
- Remove an accidentally disconnected catheter
- Use a filter during continuous epidural infusion

Diagnosis of infectious complications:
- Patient monitoring
- Periodically checking for signs/symptoms of infection (erythema, tenderness, fever)
- Periodically checking neurologic function

Diagnostic testing:
- Blood tests (e.g., white blood count, sedimentation rate, C-reactive protein)
- Culture or cerebrospinal fluid analysis
- Imaging (computed tomography, magnetic resonance imaging)

Management of infectious complications:
- Antibiotic therapy
- Percutaneous drainage of abscess
- Surgery with antibiotic therapy
- Surgery without antibiotic therapy

Outcomes
Expected benefits:
- Prevention and management of infectious complications
 - Epidural, spinal or subdural abscess
 - Paravertebral, paraspinal, or psoas abscess
 - Meningitis
 - Encephalitis
 - Sepsis
 - Bacteremia
 - Viremia
 - Fungemia
 - Osteomyelitis
 - Discitis
 - Catheter colonization (precursor to infection)

Evidence Collection
Inclusion criteria:
- RCTs
- Prospective nonrandomized comparative studies (e.g., quasi-experimental, cohort)
- Retrospective comparative studies (e.g., case-control)
- Observational (e.g., correlational or descriptive statistics)
- Case reports, case series

Exclusion criteria:
- Editorials
- Literature reviews
- Meta-analyses
- Abstracts greater than 5 yr old
- Unpublished studies
- Studies in non-peer-reviewed journals
- Newspaper articles

Survey evidence:
- Expert consultant survey
- ASA membership survey
- Literature reliability survey
- Feasibility of implementation survey

State of the Literature. For the systematic literature review, potentially relevant clinical studies were identified via electronic and manual searches of the literature. Health care database searches included PubMed, Web of Science, Google Books, and the Cochrane Central Register of Controlled Trials. The updated searches covered a 6.25-yr period from January 1, 2010, through March 31, 2016. New citations were reviewed and combined with pre-2010 articles used in the previous update, resulting in a total of 524 articles reviewed; 220 were found to contain direct linkage-related evidence. Search terms consisted of the interventions indicated above guided by the appropriate inclusion/exclusion criteria as stated in the “Focus” section of this Advisory. Only studies containing original findings...
from peer-reviewed journals are acceptable. Editorials, letters, and other articles without data are excluded. A complete bibliography used to develop this updated Advisory, organized by section, is available as Supplemental Digital Content 2, http://links.lww.com/ALN/B371.

Each pertinent outcome reported in a study was classified by evidence category and level and designated as beneficial, harmful, or equivocal. Findings were then summarized for each evidence linkage and reported in the text of the updated Advisory.

For the original Advisory, interobserver agreement among Task Force members and two methodologists was established by interrater reliability testing. Agreement levels using a κ statistic for two-rater agreement pairs were as follows: (1) type of study design, κ = 0.79 to 0.92; (2) type of analysis, κ = 0.84 to 1.00; (3) evidence linkage assignment, κ = 0.81 to 1.00; and (4) literature inclusion for database, κ = 0.75 to 1.00. Three-rater chance-corrected agreement values were: (1) study design, Sav = 0.965, Var (Sav) = 0.001; (2) type of analysis, Sav = 0.961, Var (Sav) = 0.001; (3) linkage assignment, Sav = 0.637, Var (Sav) = 0.025; (4) literature database inclusion, Sav = 0.824, Var (Sav) = 0.019. These values represent moderate to high levels of agreement.

Consensus-based Evidence. For the original Advisory, consensus was obtained from multiple sources, including: (1) survey opinions from consultants who were selected based on their knowledge or expertise in neuraxial techniques, (2) survey opinions solicited from active members of the ASA, (3) testimony from attendees of publicly-held open forums at four national anesthesia meetings, (4) Internet commentary, and (5) Task Force opinion and interpretation. The survey rate of return was 39% (n = 46 of 119) for the consultants, and 239 surveys were received from active ASA members. Results of the surveys are reported in tables 1 and 2, and summarized in the text of this updated Advisory.

The consultants were asked to indicate which, if any, of the evidence linkages would change their clinical practices if the Advisory was instituted. The rate of return was 14% (n = 17 of 119). The percent of responding consultants expecting a change in their practice associated with each linkage topic was as follows: (1) history and physical examination = 5.9%; (2) use and selection of neuraxial techniques = 5.9%, aseptic techniques = 41.2%; (3) disconnection and reconnection of catheters = 23.5%; (4) duration of catheterization = 6.9%; (5) checking for signs and symptoms of an infectious complication = 5.9%; (6) use of antibiotics = 5.9%; and (7) consultation with other specialists = 5.9%. Eighty-eight percent of the respondents indicated that the Advisory would have no effect on the amount of time spent on a typical case, and 11.8% indicated an average increase of 2.8 min in the amount of time expected to spend on a typical case with the implementation of this Advisory. Eighty-two percent indicated that new equipment, supplies, or training would not be needed in order to implement the guidelines, and 76.4% indicated that implementation of the Advisory would not require changes in practice that would affect costs.

Table 1. Consultant Survey Responses

<table>
<thead>
<tr>
<th>Evidence Linkage</th>
<th>Percent Responding to Each Item</th>
</tr>
</thead>
<tbody>
<tr>
<td>I. Prevention of Infectious Complications:</td>
<td></td>
</tr>
<tr>
<td>A history, physical examination, and review of relevant laboratory studies should be conducted prior to performing neuraxial techniques</td>
<td>46 73.9* 23.9 2.2 0.0 0.0</td>
</tr>
<tr>
<td>A history, physical examination, and review of relevant laboratory studies is useful in identifying patients at increased risk of infectious complications prior to performing neuraxial techniques</td>
<td>46 33.6 58.7* 8.7 0.0 0.0</td>
</tr>
<tr>
<td>For patients determined to be at risk of infectious complications:</td>
<td></td>
</tr>
<tr>
<td>The decision to select a neuraxial technique should be determined on a case-by-case basis</td>
<td>46 73.9* 23.9 2.2 0.0 0.0</td>
</tr>
<tr>
<td>Alternatives to neuraxial techniques should be considered</td>
<td>46 47.8 47.8* 4.4 0.0 0.0</td>
</tr>
<tr>
<td>Consider the evolving medical status of the patient in selection of a neuraxial technique</td>
<td>46 65.2* 34.8 0.0 0.0 0.0</td>
</tr>
<tr>
<td>When a neuraxial technique is selected in a known or suspected bacteremic patient, preprocedure antibiotic therapy should be administered</td>
<td>45 60.0* 26.7 13.3 0.0 0.0</td>
</tr>
<tr>
<td>Lumbar puncture should be avoided in a patient with a known epidural abscess</td>
<td>46 56.5* 23.9 17.4 2.2 0.0</td>
</tr>
<tr>
<td>Aseptic techniques:</td>
<td></td>
</tr>
<tr>
<td>Aseptic techniques should always be used during the placement of neuraxial needles and catheters</td>
<td>46 93.5* 6.5 0.0 0.0 0.0</td>
</tr>
</tbody>
</table>

(Continued)
Aseptic techniques should include:

- Removal of jewelry 46 30.4 41.3* 15.2 13.0 0.0
- Hand washing 46 76.1* 17.4 2.2 4.4 0.0
- Wearing of sterile gloves 46 100.0* 0.0 0.0 0.0 0.0
- Wearing of caps 45 64.4* 22.2 4.4 6.7 2.2
- Wearing of gowns 46 19.6 13.0 21.7* 28.3 17.4
- Wearing of masks covering both mouth and nose 46 80.4* 10.9 2.2 6.5 0.0
- Changing masks before each new case 46 28.3 30.4* 23.9 10.9 6.5
- Use of individual packets for skin preparation 46 50.0* 28.3 8.7 8.7 4.4
- Sterile draping of the patient 46 19.6 13.0 21.7* 28.3 17.4

Which skin preparation solution do you prefer prior to performing a neuraxial technique? (mean rank)†

- Chlorhexidine (2.40)
- Chlorhexidine with alcohol (1.65)
- Povidone-iodine (3.21)
- Povidone-iodine with alcohol (2.57)
- Other (4.96)

Bacterial filters should be used during continuous epidural infusion

Limit the disconnection and reconnection of neuraxial delivery systems in order to minimize the risk of infectious complications

Immediately remove accidentally disconnected catheters

Catheters should not remain in situ longer than clinically necessary

II. Diagnosis of Infectious Complications:

- Periodic evaluation of patients for signs and symptoms (e.g., fever, backache, headache, erythema, and tenderness at the insertion site) is essential for the early identification of infectious complications

Following neuraxial insertion or catheter insertion, how frequently should signs and symptoms be assessed? (percentage response)

- More than twice a day (2.2)
- Twice a day (37.8)
- Once a day (57.8*)
- Once every other day (0.0)
- Less than once every other day (2.2)

Signs or symptoms should be promptly attended to in order to minimize the impact of an infectious complication

If an infection is suspected: An in situ catheter should be immediately removed

- The catheter tip should be cultured
- Blood tests should be ordered
- Additional cultures should be obtained
- If an abscess is suspected or neurologic deficit is present, imaging studies should be performed
- If an abscess is suspected or neurologic deficit is present, consultation with other appropriate specialties should be promptly obtained

III. Management of Infectious Complications:

- Appropriate antibiotic therapy should always be administered at the earliest sign or symptom of a serious infection
- A specialist or physician with expertise in the diagnosis and treatment of infectious diseases should be consulted at the first sign of a serious infection
- If an abscess is present, surgical consultation should be obtained to determine whether percutaneous drainage of the abscess or surgery (e.g., laminectomy) is warranted

Table 1. (Continued)

<table>
<thead>
<tr>
<th>Percent Responding to Each Item</th>
<th>N*</th>
<th>Strongly Agree</th>
<th>Agree</th>
<th>Equivocal</th>
<th>Disagree</th>
<th>Strongly Disagree</th>
</tr>
</thead>
</table>

* N = the number of consultants who responded to each item. An asterisk beside a percentage score indicates the median.
† Respondents were asked to rank solutions from 1 (most preferred) to 5 (least preferred). Mean rank reported.
Table 2. American Society of Anesthesiologists (ASA) Membership Survey Responses

<table>
<thead>
<tr>
<th>Percent Responding to Each Item</th>
<th>(N^*)</th>
<th>Strongly Agree</th>
<th>Agree</th>
<th>Equivocal</th>
<th>Disagree</th>
<th>Strongly Disagree</th>
</tr>
</thead>
<tbody>
<tr>
<td>I. Prevention of Infectious Complications:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A history, physical examination, and review of relevant laboratory studies should be conducted prior to performing neuraxial techniques</td>
<td>238</td>
<td>74.0*</td>
<td>23.1</td>
<td>2.2</td>
<td>0.4</td>
<td>0.4</td>
</tr>
<tr>
<td>A history, physical examination, and review of relevant laboratory studies is useful in identifying patients at increased risk of infectious complications prior to performing neuraxial techniques</td>
<td>238</td>
<td>50.0*</td>
<td>37.0</td>
<td>10.9</td>
<td>1.7</td>
<td>0.4</td>
</tr>
<tr>
<td>For patients determined to be at risk of infectious complications:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>The decision to select a neuraxial technique should be determined on a case-by-case basis</td>
<td>238</td>
<td>68.1*</td>
<td>30.3</td>
<td>0.4</td>
<td>0.4</td>
<td>0.8</td>
</tr>
<tr>
<td>Alternatives to neuraxial techniques should be considered</td>
<td>237</td>
<td>55.7*</td>
<td>40.1</td>
<td>2.5</td>
<td>1.3</td>
<td>0.4</td>
</tr>
<tr>
<td>Consider the evolving medical status of the patient in selection of a neuraxial technique</td>
<td>238</td>
<td>63.5*</td>
<td>35.3</td>
<td>1.3</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>When a neuraxial technique is selected in a known or suspected bacteremic patient, preprocedure antibiotic therapy should be administered</td>
<td>236</td>
<td>59.3*</td>
<td>22.0</td>
<td>17.4</td>
<td>0.4</td>
<td>0.9</td>
</tr>
<tr>
<td>Lumbar puncture should be avoided in a patient with a known epidural abscess</td>
<td>238</td>
<td>78.2*</td>
<td>16.8</td>
<td>5.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Aseptic techniques:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aseptic techniques should always be used during the placement of neuraxial needles and catheters</td>
<td>238</td>
<td>91.2*</td>
<td>8.8</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Aseptic techniques should include:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Removal of jewelry</td>
<td>235</td>
<td>30.2</td>
<td>23.0*</td>
<td>27.2</td>
<td>17.0</td>
<td>2.6</td>
</tr>
<tr>
<td>Hand washing</td>
<td>237</td>
<td>69.6*</td>
<td>21.1</td>
<td>7.6</td>
<td>1.3</td>
<td>0.4</td>
</tr>
<tr>
<td>Wearing of sterile gloves</td>
<td>239</td>
<td>94.6*</td>
<td>3.8</td>
<td>0.8</td>
<td>0.4</td>
<td>0.4</td>
</tr>
<tr>
<td>Wearing of caps</td>
<td>236</td>
<td>57.2*</td>
<td>21.6</td>
<td>14.4</td>
<td>5.5</td>
<td>1.3</td>
</tr>
<tr>
<td>Wearing of gowns</td>
<td>233</td>
<td>11.2</td>
<td>9.0</td>
<td>34.8*</td>
<td>39.5</td>
<td>5.6</td>
</tr>
<tr>
<td>Wearing of masks covering both mouth and nose</td>
<td>233</td>
<td>58.4*</td>
<td>24.9</td>
<td>9.0</td>
<td>7.7</td>
<td>0.0</td>
</tr>
<tr>
<td>Changing masks before each new case</td>
<td>232</td>
<td>18.5</td>
<td>21.1</td>
<td>29.7*</td>
<td>25.4</td>
<td>5.2</td>
</tr>
<tr>
<td>Use of individual packets for skin preparation</td>
<td>235</td>
<td>59.2*</td>
<td>30.6</td>
<td>8.5</td>
<td>1.3</td>
<td>0.4</td>
</tr>
<tr>
<td>Sterile draping of the patient</td>
<td>237</td>
<td>60.8*</td>
<td>22.8</td>
<td>6.8</td>
<td>8.9</td>
<td>0.8</td>
</tr>
<tr>
<td>Use of sterile occlusive dressing at the catheter insertion site</td>
<td>239</td>
<td>54.4*</td>
<td>29.3</td>
<td>11.7</td>
<td>3.8</td>
<td>0.8</td>
</tr>
<tr>
<td>Which skin preparation solution do you prefer prior to performing a neuraxial technique? (mean rank)†</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chlorhexidine (2.45)</td>
<td>238</td>
<td>23.7</td>
<td>29.7*</td>
<td>30.5</td>
<td>14.4</td>
<td>1.7</td>
</tr>
<tr>
<td>Chlorhexidine with alcohol (2.45)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Povidone-iodine (2.28)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Povidone-iodine with alcohol (2.62)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Other (4.86)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bacterial filters should be used during continuous epidural infusion</td>
<td>236</td>
<td>23.7</td>
<td>29.7*</td>
<td>30.5</td>
<td>14.4</td>
<td>1.7</td>
</tr>
<tr>
<td>Limit the disconnection and reconnection of neuraxial delivery systems in order to minimize the risk of infectious complications</td>
<td>238</td>
<td>52.9*</td>
<td>39.9</td>
<td>6.7</td>
<td>0.4</td>
<td>0.0</td>
</tr>
<tr>
<td>Immediately remove accidentally disconnected catheters</td>
<td>237</td>
<td>13.9</td>
<td>23.2</td>
<td>36.3*</td>
<td>24.9</td>
<td>1.7</td>
</tr>
<tr>
<td>Catheters should not remain in situ longer than clinically necessary</td>
<td>238</td>
<td>65.6*</td>
<td>32.4</td>
<td>2.1</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>II. Diagnosis of Infectious Complications:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Periodic evaluation of patients for signs and symptoms (e.g., fever, backache, headache, erythema, and tenderness at the insertion site) is essential for the early identification of infectious complications</td>
<td>237</td>
<td>54.4*</td>
<td>40.9</td>
<td>4.6</td>
<td>0.0</td>
<td>0.0</td>
</tr>
</tbody>
</table>

(Continued)
Table 2. (Continued)

III. Management of Infectious Complications:

Percent Responding to Each Item

<table>
<thead>
<tr>
<th>N°</th>
<th>Strongly Agree</th>
<th>Agree</th>
<th>Equivocal</th>
<th>Disagree</th>
<th>Strongly Disagree</th>
</tr>
</thead>
<tbody>
<tr>
<td>Following neuraxial insertion or catheter insertion, how frequently should signs and symptoms be assessed?
(percentage response)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>More than twice a day (13.1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Twice a day (29.7)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Once a day (55.1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Once every other day (0.4)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Less than once every other day (1.7)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Signs or symptoms should be promptly attended to in order to minimize the impact of an infectious complication
If an infection is suspected:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>An in situ catheter should be immediately removed</td>
<td>235</td>
<td>75.3*</td>
<td>22.1</td>
<td>2.6</td>
<td>0.0</td>
</tr>
<tr>
<td>The catheter tip should be cultured</td>
<td>235</td>
<td>60.9*</td>
<td>26.4</td>
<td>11.5</td>
<td>0.9</td>
</tr>
<tr>
<td>Blood tests should be ordered</td>
<td>237</td>
<td>43.9</td>
<td>28.9*</td>
<td>23.6</td>
<td>3.4</td>
</tr>
<tr>
<td>Additional cultures should be obtained</td>
<td>232</td>
<td>30.6</td>
<td>28.0*</td>
<td>37.9</td>
<td>3.0</td>
</tr>
<tr>
<td>If an abscess is suspected or neurologic deficit is present, imaging studies should be performed</td>
<td>233</td>
<td>83.3*</td>
<td>14.6</td>
<td>1.7</td>
<td>0.0</td>
</tr>
<tr>
<td>If an abscess is suspected or neurologic deficit is present, consultation with other appropriate specialties should be promptly obtained</td>
<td>234</td>
<td>94.4*</td>
<td>5.6</td>
<td>0.0</td>
<td>0.0</td>
</tr>
</tbody>
</table>

*N = the number of ASA members who responded to each item. An asterisk beside a percentage score indicates the median.
†Respondents were asked to rank solutions from 1 (most preferred) to 5 (least preferred). Mean rank reported.

Research Support

Support was provided solely from institutional and/or departmental sources.

Competing Interests

The authors declare no competing interests.

Correspondence

Address correspondence to the American Society of Anesthesiologists: 1061 American Lane, Schaumburg, Illinois 60173; guidelines@asahq.org. This Practice Advisory and all ASA Practice Parameters may be obtained at no cost through the Journal Web site, www.anesthesiology.org.

References

Anesthesiology 2017; 126:585-601

597 Practice Advisory

82. Trojanoński A, Janicki P: Bacterial contamination of epidural catheters used for perioperative analgesia. Internet J Anesthesiology 2008; 20: http://print.ispub.com/api/0/isspub-article/3469

130. Liu SS, Pope A: Spinal meningitis masquerading as post-dural puncture headache. ANESTHESIOLOGY 1996; 85:1493–4

154. Cameron CM, Scott DA, McDonald WM, Davies MJ: A review of neuraxial epidural morbidity: experience of more than 8,000 cases at a single teaching hospital. Anesthesiology 2007; 106:997–1002

