Anesthesia machines are equipped with ventilators that in many cases are capable of providing life-sustaining mechanical ventilation to patients with respiratory failure. They are used for this purpose every day in the operating room. FDA approved labeling does not provide for using anesthesia ventilators for long term ventilatory support. Nevertheless, anesthesia ventilators are an obvious first-line backup during the COVID-19 pandemic when there are not sufficient ICU ventilators to meet the patient care needs. Local resources and constraints will impact how this solution can best be implemented. Anesthesia machines not currently being used may be located in your own hospital operating rooms, NORA locations, at nearby ambulatory surgery centers, nearby office-based surgery practices, and through your anesthesia equipment distributors. Guidance is available from the manufacturers, but the it may not convey all of the clinical considerations. Anesthesia professionals will be needed to put these machines into service and to manage them while in use. Safe and effective use requires an understanding of the capabilities of the machines available, the differences between anesthesia machines and ICU ventilators, and how to set anesthesia machine controls to mimic ICU-type ventilation strategies.

This document is intended to provide guidance on using anesthesia machines safely and effectively as ICU ventilators. Detailed information is provided below and a quick reference guide is available for downloading. The quick reference guide is intended to be a bedside tool and includes a suggested schedule for monitoring the effectiveness and safety of the anesthesia ventilator.

ASA is working with component societies to develop an inventory of local resources with the goal of moving machines to the locations where they are most needed.

(NOTE: Local conditions will likely dictate modifications to the recommendations provided. This document is intended to provide reference information that empowers caregivers at the bedside to make the best decisions possible to provide safe and effective care.)
Key Points to Consider in Preparing to Use Anesthesia Machines as ICU Ventilators

GENERAL TOPICS

- IS THIS USE OF ANESTHESIA MACHINES AS ICU VENTILATORS APPROVED BY FDA AND MANUFACTURERS?
The FDA has temporarily approved the use of anesthesia machines as ICU ventilators.
 - FDA ENFORCEMENT POLICIES FOR VENTILATORS DURING COVID-19: https://www.fda.gov/media/136318/download
GE, Draeger, Mindray, and Getinge have released guidance documents on this off label use of their machines. These guidance documents have useful recommendations for the long term use of these machines as ICU ventilators.
 - GE HEALTHCARE: 24x7 phone support 800-345-2700
 - GENERAL: https://www.gehealthcare.com/corporate/covid-19
 - SPECIFIC: https://www.gehealthcare.com/-/jssmedia/3c655c83bd6b427e9824994c12be0da5.pdf?la=en-us
 - DRAEGER Medical: 1-800-437-2437
 - MINDRAY: 800.288.2121 or 877.913.9663
 - GETINGE

WHO SHOULD MANAGE THE MACHINE?
An anesthesia professional should be immediately available at all times (24/7/365) to manage the use of the anesthesia machine as an ICU ventilator. Intensivists, ICU nurses and respiratory therapists are not trained to manage anesthesia machines, and are likely to be overextended and stressed. Consultation with intensivists on the preferred ventilation strategy is of course desirable. Respiratory therapists are essential in the management of multiple critically ill patients and long-term ventilation. Work with them on hospital policies for placement and replacement of breathing circuit filters and other disposable components. An anesthesia professional needs to be immediately available for consultation, and to “round” on these anesthesia machines at least every hour. Anesthesia machines are not protected against non-authorized users; policy and signs should warn non-authorized users about changing anesthesia machine settings.
WHERE SHOULD THE MACHINES BE USED? OR or ICU?
Ongoing ICU level patient care is best done in an intensive care unit but the local resources will likely dictate where the anesthesia machines will be deployed.

- **ICU Rooms**: At a minimum, the room requires space to accommodate the machine and sources of high pressure air and oxygen. **Scavenging is not required or necessary if appropriate viral filters are placed on the circuits and inhaled anesthetics are not used.** Suction outlets are available in the ICU but cannot be attached to the WAGD connection on the machine due to connector incompatibility.

- **Operating Rooms**: These rooms should be available in the absence of elective surgery and are appealing as isolation rooms especially if negative pressure capability is present. The anesthesia machines will be readily available for use and connected to gas supplies as well as networked for recording data to the EMR. ORs may be the only option if the ICUs become filled but have patient care drawbacks. Alarms will not be audible outside of the operating room and will need to be set to maximum volume. A caregiver will need to be continuously present in the room with the doors closed and it may be challenging to reproduce all of the ICU care resources in that location.

- **PACU beds and other hospital rooms**: PACUs are typically open with increased noise levels and the potential to spread infectious agents. Other hospital rooms may be more desirable. Physical space and sources of high pressure air and oxygen are the only requirements for using the anesthesia machine as a ventilator. Wherever these machines are deployed, there will need to be an anesthesia professional immediately available and following a monitoring schedule to insure safe use.

IF WE HAVE A CHOICE, DOES IT MATTER WHICH ANESTHESIA MACHINE WE USE? *(UPDATED APRIL 1 2020)*
There are differences in the mechanical ventilation capabilities of different anesthesia machines. In general, newer machines have more modes of ventilation, more flexible settings and specifications similar to ICU ventilators (Table). Anesthesia ventilators with **compliance compensation and tidal volume delivery unaffected by fresh gas flow** are preferred, as they provide more consistent tidal volume delivery and more accurate monitoring. Anesthesia machines obtained from ambulatory surgery centers or office-based practices may be the least suitable for this purpose; however, they might be used to fill-in for the more capable anesthesia machines that have been moved to the ICU.
TABLE OF VENTILATOR SPECIFICATIONS BY ANESTHESIA MACHINE

<table>
<thead>
<tr>
<th>Anesthesia machine model</th>
<th>Ventilator drive</th>
<th>Pm max</th>
<th>RR max</th>
<th>PEE P max</th>
<th>Vt / MV max</th>
<th>Spirometry/ Compliance/ Sensing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Draeger Apollo</td>
<td>E - Piston</td>
<td>70</td>
<td>100</td>
<td>20</td>
<td>1400 / 50</td>
<td>Y/Y/Y</td>
</tr>
<tr>
<td>Draeger Fabius or Tiro</td>
<td>E - Piston</td>
<td>70</td>
<td>60</td>
<td>15</td>
<td>1400 / 25</td>
<td>N/Y/Y</td>
</tr>
<tr>
<td>Draeger Perseus</td>
<td>E - Blower</td>
<td>80</td>
<td>100</td>
<td>35</td>
<td>1500 / 40</td>
<td>Y/Y/Y</td>
</tr>
<tr>
<td>GE Aisys</td>
<td>P - Bellows</td>
<td>100</td>
<td>100</td>
<td>30</td>
<td>1500 / 120</td>
<td>Y/Y/Y</td>
</tr>
<tr>
<td>GE Aisys C2</td>
<td>P - Bellows</td>
<td>100</td>
<td>100</td>
<td>30</td>
<td>1500 / 120</td>
<td>Y/Y/Y</td>
</tr>
<tr>
<td>GE Avance</td>
<td>P - Bellows</td>
<td>100</td>
<td>100</td>
<td>30</td>
<td>1500 / 120</td>
<td>Y/Y/Y</td>
</tr>
<tr>
<td>GE Avance C2</td>
<td>P - Bellows</td>
<td>100</td>
<td>100</td>
<td>30</td>
<td>1500 / 120</td>
<td>Y/Y/Y</td>
</tr>
<tr>
<td>GE Carestation 600 series</td>
<td>P - Bellows</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Y/Y/Y</td>
</tr>
<tr>
<td>Getinge Flow-i</td>
<td>P - Reflector</td>
<td>80</td>
<td>100</td>
<td>50</td>
<td></td>
<td>Y/Y/Y</td>
</tr>
<tr>
<td>Mindray A7 Advantage</td>
<td>P-Bellows</td>
<td>100</td>
<td>100</td>
<td>30</td>
<td>1500 / 30</td>
<td>Y/Y/Y</td>
</tr>
<tr>
<td>Mindray A5 Advantage</td>
<td>P-Bellows</td>
<td>100</td>
<td>100</td>
<td>30</td>
<td>1500 / 30</td>
<td>Y/Y/Y</td>
</tr>
<tr>
<td>Mindray A4 Advantage</td>
<td>P-Bellows</td>
<td>100</td>
<td>100</td>
<td>30</td>
<td>1500 / 30</td>
<td>N/Y/Y</td>
</tr>
</tbody>
</table>

P-Pneumatic; E-Electrical

The most capable anesthesia machines should be utilized first, and it is preferable to use one model rather than introduce a mix into the ICU. Start with an anesthesia machine whose ventilator can provide SIMV + PS using either volume and pressure targeted modes of ventilation mixed with pressure support. Then, use other models with similar capabilities. Lastly, realize that the ventilation capabilities of most anesthesia machines, even those with limited
ventilation modes and no PS capability, should be sufficient as a life saving intervention for the majority of patients. Respiratory monitoring is also important including pressure and flow monitoring with alarms. Real time spirometry (Flow-Volume and Pressure-Volume loops) is quite useful when caring for patients with respiratory failure, and for diagnosing leaks around the endotracheal tube and increased resistance through the airway HMEF. **Oxygen utilization** can be a factor when selecting anesthesia machine ventilators and managing the ventilation modes. In general, pneumatically powered ventilators consume more oxygen than electrically powered ones but modifications will be described for conserving oxygen with all ventilator designs.

DOCUMENTATION OF VENTILATION PARAMETERS

In many hospitals, anesthesia machines are connected to a network to automate documentation of ventilation parameters to the patient record. Continuing that documentation is easy if the machines remain in the operating room. If moved to another location in the hospital, it may be possible to restore the network connection for automated documentation or intermittent manual documentation may be needed. If manual documentation is needed, a template should be used for documentation.

EQUIPMENT CONSIDERATIONS

MACHINE SETUP (UPDATED APRIL 2 2020)

Setting up the machine will require

- Removal of monitors and computers that are mounted to the anesthesia machine prior to its use in an ICU.
- Connections to pressurized oxygen and air, either to hospital pipeline or large G or H cylinders. Backup oxygen and air cylinders.
- Removal or drainage of all vaporizers.
- Removal of nitrous oxide cylinder and pipeline hoses
- Possibly modifying default ventilator parameters and alarm settings (e.g., PEEP level, alarm volume, minute ventilation and airway pressure alarms, etc.) to match those of ICU ventilators
- Adjustment of the scavenger system (suction outlets are available in the ICU but cannot be attached to the WAGD connection on the machine due to connector incompatibility). If the scavenger is not connected to WAGD or suction, then either 1) it should be disconnected from hoses coming from the breathing system and ventilator, or 2) the scavenger reservoir bag should be removed if it is a closed-scavenger system. Either of these interventions will prevent high pressures in the scavenger system which would cause gas to back up into the breathing system resulting in high airway pressures and unintended PEEP at the airway.
- Changing the drive gas if the anesthesia ventilator contains a bellows. 100% oxygen is the standard drive gas for a bellows-type ventilator, and it is consumed at approximately the minute ventilation (which is significantly more than the fresh gas oxygen consumption). If oxygen supplies are
limited or being conserved, modifications can be made on some anesthesia machines to use compressed air as the drive gas. Such modifications can be done in less than one hour by a trained clinical engineer following the manufacturer's instructions.

- To convert a GE bellows ventilator from 100% O2 to compressed Air:

 Technical Reference Manual Sections:
 - Aisys CS2 Section 9.27 Change drive gas
 - Avance CS2 Section 9.27 Change drive gas
 - Carestation 6xx Section Change drive gas
 - Aespire View Section 9.28 Change drive gas

 CAUTION: If you change the drive gas, you must also change the drive gas selection on the ventilator service setup screen. Refer to Section 4 of the ventilator Technical Reference manual. If the drive gas selection and the actual drive gas do not agree, volumes will not be correct.

- The drive gas cannot be changed to air on Mindray anesthesia machines.
 - A breathing circuit with reservoir bag and viral filters to protect the machine from internal contamination. A heat and humidity exchange filter (HMEF) should be placed at the endotracheal tube connection to the breathing circuit, and a second HMEF or filter should be placed on the expiratory hose where it connects to the anesthesia machine (see FAQ on Anesthesia Machine Use, Protection, and Decontamination During the COVID-19 Pandemic). Replacement filters and breathing circuits should be readily available.
 - A backup manual resuscitator (bag-valve-mask) with expiratory port filter that is available at all times for backup ventilation. Note that in some anesthesia ventilator failure modes, manual ventilation using the anesthesia machine may still function properly.
 - Respiratory gas monitor(s) for inspired oxygen and inspired/exhaled carbon dioxide, either internal or external to the machine.

MANAGING THE SELF TEST (UPDATED APRIL 2 2020)

Most modern anesthesia machines have startup-test procedures to be performed before use that should be repeated every 24 hours to ensure proper function. The patient cannot be ventilated with the anesthesia machine during the startup-test, even in manual mode, so alternative means of ventilation are necessary during this time. Although it is not considered ideal, guidance from manufacturers during this crisis allows for a startup-test interval up to 72 hours. Power to the machine should be cycled between every patient and no longer than once every 72 hours. Refer to this Startup-Test Checklist for step-by-step guidance.

DELIVERING A DESIRED INSPIRED OXYGEN CONCENTRATION

- Due to rebreathing in a circle system, the inspired oxygen concentration may be significantly lower than the fresh gas concentration. For this
reason, **inspired oxygen concentration must be monitored.**

Rebreathing increases progressively as fresh gas flow is reduced below minute ventilation.

- On some anesthesia machines, the oxygen concentration of the fresh gas can be set directly, along with the total flow.
- On other anesthesia machines, the flows of oxygen and air are set and the fresh gas oxygen concentration must be calculated. The following table is a general guide to ratios of oxygen and air flow and the resulting oxygen concentration that will be delivered to the circuit.

<table>
<thead>
<tr>
<th>Desired FiO2</th>
<th>Oxygen to Air Ratio</th>
<th>Oxygen flow for 5 L/min total</th>
<th>Air flow for 5 L/min total</th>
</tr>
</thead>
<tbody>
<tr>
<td>21%</td>
<td>0 to 1</td>
<td>0.0</td>
<td>5.0</td>
</tr>
<tr>
<td>25%</td>
<td>0.06 to 1</td>
<td>0.3</td>
<td>4.7</td>
</tr>
<tr>
<td>30%</td>
<td>0.13 to 1</td>
<td>0.6</td>
<td>4.4</td>
</tr>
<tr>
<td>35%</td>
<td>0.21 to 1</td>
<td>0.9</td>
<td>4.1</td>
</tr>
<tr>
<td>40%</td>
<td>0.31 to 1</td>
<td>1.2</td>
<td>3.8</td>
</tr>
<tr>
<td>50%</td>
<td>0.59 to 1</td>
<td>1.9</td>
<td>3.1</td>
</tr>
<tr>
<td>60%</td>
<td>0.99 to 1</td>
<td>2.5</td>
<td>2.5</td>
</tr>
<tr>
<td>80%</td>
<td>3 to 1</td>
<td>3.8</td>
<td>1.3</td>
</tr>
<tr>
<td>100%</td>
<td>1 to 0</td>
<td>5.0</td>
<td>0.0</td>
</tr>
</tbody>
</table>

- Regardless of how the fresh gas oxygen concentration is set, the resulting patient inspired oxygen concentration will depend upon the fresh gas flow and amount of rebreathing. Fresh gas oxygen concentration may require adjustment to maintain the desired inspired oxygen concentration.

TOTAL FRESH GAS FLOW SETTINGS (UPDATED APRIL 1 2020)

The ability to change fresh gas flow and alter the amount of exhaled gas rebreathed is the key feature distinguishing an anesthesia ventilator from an ICU ventilator. In general, if the fresh gas flow exceeds minute ventilation, there is little to no rebreathing. As fresh gas flow is reduced, progressively more exhaled gas is rebreathed. Rebreathing has the advantage of conserving oxygen and anesthetic agent but utilizes CO2 absorbent and generates heat and humidity.

THE EXPERIENCE TO DATE IS CLEAR THAT WHEN AN ANESTHESIA MACHINE IS USED AS AN ICU VENTILATOR, LOW FRESH GAS FLOW LEADS TO EXCESSIVE HUMIDITY IN THE CIRCUIT, CLOGGING OF
FILTERS, AND THE NEED TO CHANGE CO2 ABSORBENT FREQUENTLY.

- Initially, set fresh gas flow to equal minute ventilation - about 6-8 Liters per minute in adult patients
- Monitor the circuit for excess humidity and increase fresh gas flow if humidity is a problem
- CO2 absorbent should be used slowly, if at all, but should be left in place
- Monitor inspired CO2 and change absorbent if indicator changes and inspired CO2 reaches 5 mmHg
- Use an HMEF at the airway to insure that adequate humidity is maintained in the lungs
- Use a high-quality viral filter at the end of the expiratory limb

The goal of this recommendation is to reduce or eliminate rebreathing of exhaled gas. Absorption of exhaled carbon dioxide generates moisture and utilizes the CO2 absorbent. Eliminating rebreathing prevents the accumulation of excess moisture in the circuit and the need to replace the CO2 absorbent. Once the fresh gas flow exceeds minute ventilation, there is almost no rebreathing. Increasing fresh gas flow further does not provide any advantage and wastes compressed gas. Adult patients will typically require a minute ventilation of 6 to 8 liters per minute to achieve normocapnia. Since fresh gas entering the circuit has no humidity, it is recommended to place a heat and moisture exchange filter (HMEF) at the airway to preserve the humidity in the lungs. CO2 absorbent should be left in place to reduce the internal volume of the breathing circuit and protect the patient from hypercarbia if FGF is reduced, or does not completely prevent rebreathing. It is possible that there may be a small amount of rebreathing and utilization of absorbent. Changing absorbent when the inspired CO2 reaches 5 mmHg will minimize waste.

- STRATEGIES FOR CONSERVING OXYGEN (UPDATED APRIL 1 2020)
 The availability of oxygen will vary from place to place. If an adequate supply of oxygen is a concern, strategies can be employed that will reduce oxygen utilization substantially when using an anesthesia ventilator. Without modification, some anesthesia machines can use 10-12 liters per minute or more of oxygen, compared to 7-10 liters per minute by an ICU ventilator. Options to conserve oxygen include:
 - Using an electrically-powered anesthesia ventilator (currently, only made by Draeger): These ventilators do not consume any oxygen to develop pressure and flow; oxygen consumption equals the oxygen fresh gas flow rate.
 - Converting the bellows ventilator (typically powered by compressed oxygen) to use compressed air as the drive gas.
- GE has a documented procedure for converting any of their anesthesia ventilator models to compressed air. This can be done by a qualified clinical engineer in less than an hour. Anesthesia techs and anesthesia clinicians will not typically have the training or documentation to perform this conversion. Manufacturers’ instructions are referenced above.
 - Mindray ventilators cannot be converted to air.
 - Reduce fresh gas flow below minute ventilation in increments of 500 mls/min but be vigilant for accumulation of humidity. It should be apparent in 1 to 2 hours if humidity is accumulating in the circuit or not and fresh gas flow can be adjusted up or down accordingly.

- **HUMIDIFICATION CONSIDERATIONS (UPDATED APRIL 1 2020)**
 Compressed gases that enter the breathing circuit have 0% humidity. Not humidifying this gas can dry mucus and other airway secretions leading to mucus plugging, and can injure lung epithelium in the long-term. Thus, it is especially important to maintain airway humidity during long-term ventilation.
 - At recommended fresh gas flows set to minute ventilation, maintaining adequate humidity in the lungs will typically require use of a heat and moisture exchanger (HME). HMEFs also contain filters and are recommended. Active humidification of inspired gas may be considered, but is discouraged by most manufacturers.
 - If active humidification is used with high fresh gas flows, you WILL experience problems with ventilation and monitoring that will need to be managed. Anesthesia machines are not designed to handle large amounts of condensed water within the breathing system. It can increase resistance to flow through the system, interfere with sensors (such as flow sensors and respiratory gas analyzers), and even short-circuit electronics. Heated breathing systems prevent some of this condensation. Condensers and water traps can be added to some breathing systems to help collect condensed water. During extended use, the user must periodically drain water from the breathing circuit hoses, and sites of water collection within the breathing system. The patient may need to be ventilated by hand while this is done.

- **MONITORING VENTILATION**
 While anesthesia professionals are trained to monitor ventilation during operative cases, there are additional considerations due to the use of extra filters in the breathing circuit, the accumulation of condensed water over time, and the potential for aerosolizing COVID-19 virus.
 - Baseline monitored parameters (Pressure, Flow, Volume, Minute ventilation) should be recorded when therapy is initiated. If spirometry is available, the baseline reference loops should be saved for later comparison.
 - One problem with airway filters is that the resistance through them increases when they become wet (especially electrostatic-type filters) or
filled with airway secretions. Increased airway pressure is a late sign of this problem because pressure is sensed upstream of the airway HMEF. Impeded expiratory flow is an earlier indication that should be looked for by comparing expiratory flow tracings and flow-volume loops to baseline recordings. Impeded expiratory flow is indicated by a decrease in peak expiratory flow or a prolongation of expiratory flow that can be observed on a flow tracing or flow-volume loop. There may also be a slight delay or slurring of the expiratory capnogram.

- Condensed water buildup in breathing circuit hoses and dependent parts of the breathing system may cause oscillations in the pressure and flow waveforms, as gases bubble past the fluid obstructions. These oscillations may be sensed as patient inspiratory effort, causing the ventilator to initiate a patient-triggered breath. Consider this when the total respiratory rate exceeds set respiratory rate in a sedated or paralyzed patient.
- Leak around the endotracheal tube cuff is a hazard in the COVID-19 patient because of resulting aerosolization. With a leak around the endotracheal, the measured exhaled tidal volume will be significantly lower than the measured inhaled tidal volume, and the flow-volume loop will not close. At low fresh gas flows, the bellows will not totally reinflate on exhalation when there is a significant leak around the endotracheal tube cuff (on a Draeger machine with a piston or turbine ventilator, the reservoir bag will progressively deflate).

- **PROVIDING POTENT ANESTHETIC AGENTS (UPDATED APRIL 2 2020)**

Anesthesia machines have the capability of providing inhaled anesthetics for sedation during long-term care. While this might be an attractive option if intravenous sedatives are in short supply, it is not generally recommended when the machines are used as ICU ventilators for the following reasons:

- Inhaled anesthetics have profound physiologic effects that can have a significant negative impact on critically ill patients
- Critical care nurses and intensivists are generally not familiar with dosing or monitoring the effects of these drugs
- Scavenging of exhaled gas is required when delivering inhaled anesthetics and may not be readily available outside of the operating room
- High fresh gas flows needed to prevent humidity from accumulating in the circuit will result in high anesthetic consumption and the need to frequently refill the vaporizer. Most of this anesthetic is vented to the atmosphere as waste gas, unabsobered by the patient.
- Long term sedation with inhaled anesthetics is not a common practice in the United States although it has been used in other countries especially Europe for many years.

These considerations notwithstanding, if intravenous sedatives need to be rationed, it is possible to sedate patients being ventilated with an anesthesia machine by delivering inhaled anesthetics. Considerations for maximizing the
safety and effectiveness of inhaled anesthetics when used for ICU sedation can be found in the document entitled: ASA/APSF Guidance for Use of Volatile Anesthetic for Sedation of ICU Patients

- CLEANSING THE MACHINE BETWEEN PATIENTS
 Hospital procedures for reprocessing ventilators between patients should be followed if breathing circuit filters have been used as directed. In this case, there should be no increased risk of passing COVID 19 virus to a subsequent patient via the anesthesia machine. The manufacturer’s recommendation for decontaminating the anesthesia machine should be followed if there is evidence that the internal surfaces of the breathing system have been contaminated. Refer to manufacturer guidelines for specific procedures. Information can also be found on the APSF website: https://www.apsf.org/faq-on-anesthesia-machine-use-protection-and-decontamination-during-the-covid-19-pandemic/#cleaning

EDUCATIONAL MATERIAL ON CLINICAL MANAGEMENT OF CRITICALLY ILL PATIENTS WITH COVID 19

CAESAR ICU
COVID Activated Emergency Scaling of Anesthesiology Responsibilities (CAESAR) ICU is an educational program from the ASA Committee on Critical Care and the Society of Critical Care Medicine. This program is intended to provide guidance for managing critically ill patients with COVID 19 and is available to any healthcare professional. The program can be accessed at https://www.asahq.org/in-the-spotlight/coronavirus-covid-19-information/caesar