TEXAS A&M UNIVERSITY, HEALTH SCIENCE CENTER CENTER FOR HEALTH ORGANIZATION TRANSFORMATION

The Perioperative Surgical Home (PSH)

A Comprehensive Literature Review for the American Society of Anesthesiologists

by

Bita Kash, PhD, MBA, FACHE Kayla Cline, MS Terri Menser, MBA Yichen Zhang, MS, MA

Submitted to the American Society of Anesthesiologists (ASA) June 12, 2014

> ASA Contact: Thomas R. Miller, PhD, MBA Director of Health Policy Research, ASA

ACKNOWLEDGMENTS

This report was guided by and developed with the assistance of Thomas R. Miller, PhD, MBA, Director of Health Policy Research at the American Society of Anesthesiologists.

This material is based upon work supported by the National Science Foundation under Grant No. IIP-0832439. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation.

Note: The project has received Institutional Review Board (IRB) review and approval by the Texas A&M University's IRB process.

For more information on the CHOT please visit: http://www.chotnsf.org

Author contact information:

Bita A. Kash, PhD, MBA, FACHE Center for Health Organization Transformation Texas A&M University Health Science Center TAMU 1266 College Station, TX 77843 Phone: 979.458.0652 Email: bakash@srph.tamhsc.edu

Contents

INTRODUCTION	4
METHODS: LITERATURE REVIEW APPROACH	7
Phase 1: Peer-Reviewed Literature	7
Phase 2: Non-Peer Reviewed Literature	8
PHASE 1: RESULTS BY CATEGORY	9
1. THE SURGICAL HOME CONCEPT	9
Data Sources and Search Strategy	9
History and Evolution	9
Related Concepts	10
Models	10
2. EARLY PATIENT ENGAGEMENT	11
Data Sources and Search Strategy	11
Early Patient Engagement on Patient's Risk Assessment	11
Early Patient Engagement and OR Efficiency Improvement	12
Early Patient Engagement and Surgical Outcomes	12
The Role of the Anesthesiologist	13
3. REDUCED PRE-OP TESTING	13
Data Sources and Search Strategy	13
Cost Reductions as a Result of Decreased Preoperative Testing	13
Effect on Clinical Outcomes	13
Factors Contributing to Excessive Preoperative Testing	14
4. INTRAOPERATIVE EFFORTS LEADING TO BETTER EFFICIENCY	14
Data Sources and Search Strategy	14
Delays	14
Overall Efficiency	14
Improved Quality of Care	15
5. POSTOPERATIVE CARE INITIATIVES	15
Data Sources and Search Strategy	15
Leading Initiatives	15
Clinical Outcomes	16
The Role of the Anesthesiologist	16

6. REDUCED POSTOPERATIVE COMPLICATIONS16
Data Sources and Search Strategy16
Overview
Clinical Outcomes16
Factors Related to Complications17
7. CARE COORDINATION AND TRANSITION PLANNING
Data Sources and Search Strategy17
Leading Initiatives – Surgical Home Example17
Clinical Outcomes and Cost Reductions
Care Coordination and Postoperative Education Initiatives
The Role of the Anesthesiologist
TABLE 3. ARTICLES BY SURGICAL SPECIALTY
PHASE 2: REVIEW OF NON-PEER-REVIEWED LITERATURE
Trends in Healthcare Improvement
The Perioperative Surgical Home Overview
The Role of the Anesthesiologist
Payment Arrangements
Existing Surgical Homes: Featured Models
UAB Medicine:
UC Irvine
FUTURE RESEARCH: THE PSH AS A HEALTHCARE MICROSYSTEM
REFERENCES
Appendix A: Literature Charting for Topic 1 - The Surgical Home Concept
Appendix B: Literature Charting for Topic 2 – Early Patient Engagement
Appendix C: Literature Charting for Topic 3 – Reduced Preoperative Testing
Appendix D: Literature Charting for Topic 4 – Intraoperative Efforts Leading to Greater Efficiency 65
Appendix E: Literature Charting for Topic 5 – Postoperative Care Initiatives
Appendix F: Literature Charting for Topic 6 – Reduced Postoperative Complications
Appendix G: Literature Charting for Topic 7 – Care Coordination and Transition Planning

INTRODUCTION

The concept of a perioperative surgical system has been evolving, described, studied and recorded mostly in the western world, including countries within North America, Europe and Australia, in the last forty years. This observed paradigm shift in surgical care processes has been explained as part of a general international trend of surgical specialties and capabilities moving from the inpatient to the ambulatory care setting (Reed & Ford, 1976), as well as market expectations for high quality surgery outcomes, reductions in the cost of surgeries, and expected government payment and incentive programs. A recent review of perioperative surgical systems identified several specific activities that are associated with this new concept of a more coordinated surgical care model, which moves from the traditional reactive and sequential surgery process to a more proactive, coordinated and team-based approach to the same surgery process (Lee, Kerridge, Chui, Chiu, & Gin, 2011). Although hospitals and health professionals engaged in these new systems of coordinated perioperative surgery vary dramatically in the stage of implementation, how they operate, team composition, program leadership, and scope and depth of coordination and communication among care teams, the following key elements or features (Table 1) have been identified in the current international literature to describe the nature of the perioperative surgical home:

Table 1. Perioperative Surgical Home Elements			
Preoperative Key Elements	Intraoperative Key Elements	Postoperative Key Elements	
 Admission through a centralized preoperative area/clinic Early preadmission assessments Centralized systems to gather health and other information about patients before hospital admission Preoperative innovations such as "prehabilitation" programs for targeted patients A triage system to identify which patients need to attend a preadmission clinic or program Use of a multidisciplinary team based clinical care processed within the hospital to coordinate complex preparation of patients before surgery 	 Integrated pain management Fast-track surgery and discharge home Precise fluid management OR delay reduction techniques Increased OR efficiency through improved OR flow Scheduling initiatives to reduce cancellations and increase efficiency 	 Integrated pain management Early postoperative mobilization by physical therapy and integrated acute-care and rehabilitation care Improved coordination of care from postoperative to discharge home Improved discharge protocol Increased patient and caretaker education concerning post- discharge care 	

Surgery systems with some or all of these key features are often referred to as the "Perioperative Surgical Home" (PSH) in the United States, as it resembles the well-known and recorded elements and purpose of the patientcentered medical home (PCMH) initiatives for chronic disease management and primary care coordination. Today, in the United States (US) the "perioperative process" of surgery is often referred to and studied as a "surgical home" program or components of the PSH, including patient-centered coordinated surgery programs and fast-track programs or enhanced recovery after surgery (ERAS). This report is based on a comprehensive literature review that included search terms broad enough to capture various types of "medical home" concepts and elements of PSH studies to cover the depth of knowledge and activities in this evolving field. The report then organizes the broad search results into relevant topic categories, offers relevant findings by topic category and tabulates relevant articles by the topic categories in the appendices. These topic categories allow the reader to understand the current state of activities within these PSH and PSH-like programs in terms of preoperative, intraoperative, postoperative, and perioperative initiatives, expected and reported cost and clinical outcomes, and surgery specialties.

The first section (topic category) of this comprehensive literature review focuses on the history, purpose and evolution of the perioperative surgical home model, building on our experience and learning from the wellestablished concept of a patient centered medical home (PCMH). A recent review of randomized controlled trials evaluating patient-centered approaches in healthcare reports various patient engagement initiatives, such as the concept of empowered care and educating patients on how to manage their health, and finds that the PCMH benefits were associated mostly with improved patient satisfaction and perceived quality of care (McMillan et al., 2013). Today, more and more evidence appears in the healthcare literature to support PCMH models and the underlying principle of one personal doctor who coordinates the patient's care and engages a team of professionals and the patient in an individualized treatment and management plan (Pourat, Lavarreda, & Snyder, 2013). The PCMH is a patient centered care model that embodies principles laid out by the Institute of Medicine (IOM) and is thought to be the means to improved care coordination and patient satisfaction (Robert Graham Center, 2007). In general, patient centered care initiatives have improved clinical outcomes, perceptions of quality of care, and patient satisfaction; both the medical home and the surgical home share a vision of improved outcomes in quality and cost of care while incorporating similar elements of patient engagement and care coordination (Vetter, Goeddel, et al., 2013). Coordination is often lacking in the surgical care process; the medical home concept provides a relevant model to address this lack of coordination that has recently been evaluated for both impact on clinical outcomes and cost of surgery (Warner, 2011). The surgical home concept seems to be well positioned to fill a void similar to the void observed in the primary care and chronic disease management arena, as it focuses on the coordination of care and patient engagement in all aspects of the perioperative care process.

Today, PSH program titles and descriptions still vary across hospitals, states, and countries. These variations in program terminology, program features, and foci required us to approach the literature review in a systematic and comprehensive manner. We started with broad concepts and search terms describing this new paradigm shift in surgical care and moved to more specific search terms covering particular features and phases of a perioperative surgery system or PSH. This review of literature covers the history, nature, elements, processes, and empirical research on outcomes and performance of PSH programs studied in the US and internationally. In order to help categorize and organize relevant studies of and literature on the PSH, the research team organized the literature review approach and reporting of results by targeting the following seven topic categories:

- Surgical home concept: This includes references, general literature reviews, and the history of coordinated surgical care that might refer to programs as a perioperative surgical home, a patient-centered coordinated surgery program, or any combination of two or more of the preoperative, intraoperative and postoperative phases in order to reduce cost and improve clinical outcomes. This search category is aimed at an improved understanding of the PSH concept and its current stage of development.
- 2. **Early patient engagement:** This search category focuses on programs or other organized activities to engage patients in the surgery process before the scheduled surgery. Efforts and initiatives might include: engaging patients to create open communications, supporting and educating patients to make decisions and participate in the process of undergoing surgery as either an inpatient or outpatient, and reducing unrealistic expectations.
- 3. **Reduced pre-op testing:** Early research results on PHS models and programs have shown promising results, such as reducing the need for and duplicated efforts in pre-op testing and associated risks. Unnecessary and

duplicative testing results in significantly increased costs with no benefit to patients, physicians, or healthcare facilities. By coordinating preoperative testing and ensuring that only those tests that are necessary based on the patient's individual medical conditions are given, the PSH is expected to achieve cost savings without negatively impacting patient care.

- 4. **Intraoperative efforts leading to better efficiency:** Other promising efficiencies linked to the PSH concept include reducing delays, increasing surgical facility throughput, and optimizing equipment and devices utilized. These efficiencies allow the PSH team to achieve more efficient care without sacrificing quality. The literature review aims to find examples of better efficiencies in PSH initiatives studied.
- 5. Postoperative care initiatives: The PSH concept includes elements that improve patient outcomes and reduce costs related to postoperative care coordination and innovation. Having the PSH team coordinate postoperative care may result in improvements in the incidence of postoperative nausea and vomiting, reductions in the severity and duration of postoperative pain, achieving patient mobility sooner and, for patients undergoing inpatient surgical procedures, the likelihood of earlier discharge from the hospital setting. This step in the literature review aims to find specific examples of such programs and initiatives and evidence for improved quality and cost outcomes and new knowledge.
- 6. Reduced postoperative complications: The PSH team approach to patient care may result in fewer postoperative complications. In addition, when such complications do occur, they are likely to be recognized sooner and treated more efficiently. These improvements will result in lower overall costs associated with postoperative complications. This section of the literature reviews seeks to find actual examples of specific approaches to detection and reduction of post-op complications and their reported and expected outcomes.
- 7. **Care coordination and transition planning:** Early discharge planning, especially for patients undergoing inpatient procedures, will result in decreased hospital stay and thus decreased cost of care, allowing earlier transfers to more appropriate care settings, such as rehabilitation centers, skilled nursing facilities or, with the proper support, to the patient's home. The review focused on identifying and describing such initiatives.

The literature review was designed to address each of the elements of the PSH concept by finding specific examples of efforts linked to the element, such as patient engagement, pre-op testing and care coordination and transition planning, and to quantify the expected outcomes in terms of clinical outcomes and reductions in cost of care. Therefore, all of the above topic areas were studied in terms of two criteria:

- **Clinical outcomes:** Better care coordination and increased standardization while still allowing for patient variability has been shown to result in better clinical outcomes.
- **Cost reduction:** Just as the PCMH results in cost savings across ambulatory care settings, the PSH is expected to result in cost reductions in both inpatient and outpatient surgical settings.

The research team was also interested in non-peer reviewed literature that might offer PSH program details, such as processes, pathways, and guidelines that resulted in savings to the healthcare systems, particularly those providing care to patients under the newer payment models, such as bundled payment. Peer-reviewed sources of empirical studies of PSH programs are covered in Phase 1 of the literature review and are distinguished from reports and other sources of information gathered and analyzed in Phase 2. Phase 2 literature review incudes any source of information, including published newsletters, websites, professional blogs, public reports, and interviews with experts in the field. Phase 2 findings are summarized and presented by emerging themes and organized into topic categories covered. We also attempted to focus on a select number of PSH examples covered in this literature, offering a more detailed evaluation and description of a few models of practice.

METHODS: LITERATURE REVIEW APPROACH

Phase 1: Peer-Reviewed Literature

For the first version of this comprehensive literature review, we performed searches between June 2013 and August 2013 of the English-language literature indexed in PUBMED (1975 to 2013) and Google Scholar using a broad set of terms to maximize sensitivity. This project incorporated three means of article retrieval: 1) a comprehensive search of available literature using PubMed and Google Scholar, 2) reference crawling of all selected articles, and 3) articles provided to the research team by the ASA contact person. The research team retrieved and evaluated a total of 258 potentially relevant studies related to the general topic of the PSH, its history, development, and elements of a PSH. Of this total, 133 were deemed relevant; 8 of these articles were in non-peer-reviewed publications. The search parameters for the comprehensive literature review included empirical studies, review articles, and other materials that directly related to the concept of a perioperative surgical system. These articles were identified using search terms listed in Table 2. Researchers reviewed the abstract and methods section of each paper to determine if the contents of the paper fit the selection criteria for the seven enumerated topic categories related to the surgical home concept. Exclusion criteria were driven by publication date; in general, researchers excluded articles published prior to 1975 except for topic 6 (Reduced Postoperative Complications), which had to be restricted to more recent articles to ensure relevancy to the general concept of PSH. The ASA provided a total of 34 articles for inclusion, of which 28 were in peer-reviewed journals, yielding a total of 153 peer-reviewed articles. The 153 included articles have been cited a total of 28,638 times in the current peer-reviewed literature. A total of 68 peer-reviewed studies were conducted in the US. These studies were published between 1980 and 2013. See Phase 2 of this section for a discussion of non-peer-reviewed sources.

This search process was reperformed in January and May of 2014 in order to (a) update findings to include items published after August 2013 and (b) include articles suggested by interested parties after reading the first version of the document. In January, the searches of the published literature yielded a total of 23 articles for inclusion, 19 of which were in peer-reviewed journals. A total of 22 articles were suggested by the ASA and other interested parties, 20 of which were in peer-reviewed journals. In May, the searches of the published literature yielded a total of 21 articles for inclusion, all of which were in peer-reviewed journals. A total of 15 articles were suggested by the ASA and other interested parties, and other interested parties, 15 of which were in peer-reviewed journals. Thus, a total of 228 peer-reviewed articles are now included in this report. These articles have been cited a total of 27,988 times.

Table 2. Literature Search Strategy			
Search Category	Search Terms Used	Selection Criteria	Exclusion Criteria
1. The Surgical Home Concept	 "perioperative surgical home" "surgical home" patient-centered coordinated surgery program "cost" or "outcome" 	Related to the concept of the surgical home, or any combination of two or more of the following: preoperative, intraoperative and postoperative coordination	Articles published prior to 1975
2. Early Patient Engagement	 "early patient engagement" "perioperative surgical home" "patient-centered 	Focuses on programs and efforts to engage patients in the surgery process before the scheduled surgery	Articles published prior to 1975

	Table 2. Literature Search Strategy			
Search Category	Search Terms Used	Selection Criteria	Exclusion Criteria	
	 coordinated surgery program" "cost" or "outcome" 			
3. Reduced Preoperative Testing	 "perioperative surgical home" "reduced preoperative testing" "Unnecessary testing "OR" duplicative testing" "patient-centered coordinated surgery program" "cost" or "outcome" 	Focus on ensuring provision of only tests that are necessary based on the patient's individual medical conditions	Articles published prior to 1975	
4. Intraoperative Efforts to Improve Efficiencies	 "intraoperative efficiency" "surgical facility" or "equipment" or "devices utilized" "reducing delays" "perioperative surgical home" "patient-centered coordinated surgery program" "cost" or "outcome" 	Linked to the PSH concept and reducing delays, increasing surgical facility throughput and optimizing equipment and devices utilized	Articles published prior to 1975	
5. Postoperative Care Initiatives	 "Post-procedural care initiatives" "care initiatives" "post-procedural" 	Directly related to the concept of a surgical home		
6. Reduced Postoperative Complications	 "reduce complications" "efficiency"	Directly related to the concept of a surgical home	Articles published prior to 2005	
7.Care Coordination and Transition Planning	 "care coordination" "transition planning" "inpatient procedures" "skilled nursing facilities" "rehabilitation centers" "cost reduction" "post surgery" "after surgery" 	Directly related to the concept of a surgical home		

Phase 2: Non-Peer Reviewed Literature

As a secondary phase of our literature review, we searched for and analyzed non-peer-reviewed sources of information on the perioperative surgical home. Examples of non-peer-reviewed articles are ASA information briefs

and articles, governmental publications, and health organizations' white papers, other briefs, and model documentation. These sources were identified with the input of ASA members (6 sources), a comprehensive search of the ASA website for the term 'surgical home' (9 sources), Google searches for 'perioperative surgical home' (4 sources), and grey literature sources identified in the course of the peer-reviewed search (8 sources) for a total of 27 sources. These searches were also reperformed in January and May of 2014, yielding a total of 8 new sources and bringing the total number of non-peer-reviewed items to 35.

PHASE 1: RESULTS BY CATEGORY

1. THE SURGICAL HOME CONCEPT

Data Sources and Search Strategy

The search terms for this topic category included: "perioperative surgical home" which retrieved 29 results, "patientcentered coordinated surgery program" which retrieved 4 results, "preoperative" and "intraoperative" and "cost" or "outcome" which retrieved 35 results, "preoperative" and " postoperative " and "cost" or "outcome" which retrieved 108 results, and "intraoperative" and "postoperative" and "cost" or "outcome" which retrieved 86 results.

After a detailed review of these articles, we only selected those papers that focused on PSH and PSH-like programs. The final number of peer-reviewed articles for this topic was 73. See Appendix A for a detailed description of these articles. Some of the articles not included in Appendix A are included in one of the other six sections and relevant appendices.

The literature studied within this first general PSH topic category falls into three main sub-topics: the history and evolution of PSH concept, concepts related to the PSH, and review of different PSH models.

History and Evolution

The surgical home concept has evolved over the last two decades. In the 1960s, primary care was recognized as a separate entity and a primary care medical home was created for ill children (Kilo & Wasson, 2010). In the 1970s and 1980s, innovations in information technology improved capabilities that facilitated continuity of care and patient behavioral interventions (A. Lee et al., 2011). In the 1990s, driven by the emphasis on cost containment in the healthcare delivery system, the department of anesthesiology at the University of Pittsburgh developed the concept of the "perioperative process" (Rotondi et al., 1997). Rotondi, Williams and other researchers benchmarked the perioperative process. Their findings showed that a real-time patient routing system, which tracks the progress of patients during the perioperative process, could increase the operating room (OR) utilization efficiency and reduce OR delay. They also proved that anesthesia clinical pathways improved process outcomes, reduced nursing labor intensity, and saved costs.

In addition, during the late 1990s and early 2000s, the VA system was developing the National Surgical Quality Improvement Program (NSQIP) to improve the quality of surgical care. Several studies document the NSQIP development process and its success in improving quality of care in both the VA and in the private sector (S. F. Khuri, 2006; S. F. Khuri et al., 1998; S. F. Khuri et al., 1997).

In 2006, the ASA Task Force on Future Paradigms in Anesthesia Practice advised anesthesiology training programs to expand their focus beyond operating rooms to include perioperative management and critical care (Fleisher et al., 2007). Since the release of this report, more academic institutions have expanded their training programs accordingly (Johnstone, 2012). The Patient Protection and Affordable Care Act (PPACA) of 2010 included legislation promoting Accountable Care Organizations (ACOs), which are generally designed to hold multiple providers jointly accountable for achieving target quality and reductions in cost of care per capita for a designated

patient population within an integrated health system. As two-thirds of hospital costs relate to surgical care, operating room efficiency is a primary focus for the ACO initiative within PPACA. According to Johnstone (2012), in order to meet ACO requirements, the anesthesiologist must include the preoperative and postoperative process under their director responsibilities (Johnstone, 2012a). The PSH is one way for anesthesiologists to do this (Szokol & Stead, 2014). The ASA has reaffirmed a growing commitment to perioperative care, stating that "through perioperative homes, anesthesiologists can help hospitals and other healthcare organizations meet the aims and priorities of national quality strategy" (Johnstone, 2012).

Later studies revealed the difficulty of establishing practice guidelines in the implementation of the key elements of a PSH, which are highly concentrated within the preoperative process. For example, related to the reduction of unnecessary preoperative tests and content unmet preoperative assessment needs in large health systems, Newman et al. argued:

"If clear guidelines can be implemented, then the preoperative assessment can be appropriately designed, delays prevented, surgery completed, and outcomes improved. In other cases in which diagnostic findings do not require further presurgical assessment or intervention but instead define long-term risk, this information should be passed forward with electronic health records or other mechanisms to allow the timely yet appropriate care of the patient." (M. F. Newman, Mathew, & Aronson, 2013)

A more recent paper by Vetter and colleagues based on the PSH at UAB explains the basic components of a PSH and discusses a methodology to evaluate the effectiveness of PSH initiatives, including both the measures necessary for a thorough evaluation and suggestions concerning study design (Vetter, Ivankova, & Goeddel, 2013).

Related Concepts

Currently, there are several concepts being researched related to the PSH concept, including patient-centered coordinated surgery programs and fast-track programs or enhanced recovery after surgery (ERAS).

Patient-Centered Coordinated Surgery Programs: The Institute of Medicine defines patient-centered care as care that establishes a partnership between providers and patients and provides patients with the support they need to make decisions and participate in their own care (Oates, Weston, & Jordan, 2000). In 2010, Bakhtiari proposed four key success factors for patient centered care: 1) "Link the care continuum", 2) "Involve families", 3) "Listen to the patient", and 4) "Improve OR efficiency" (Bakhtiari, 2010). A more patient center surgical model can improve the quality and speed of the operation, which will influence patient satisfaction and reduce costs and mistakes.

Enhanced recovery after surgery (ERAS) programs: Eskicioglu and colleagues (2009) describe ERAS programs as "multimodal perioperative programs that aim to accelerate recovery, shorten hospital stay, and reduce complication rates following surgery" (Eskicioglu, Forbes, Aarts, Okrainec, & McLeod, 2009). ERAS programs include many preoperative, intraoperative, and postoperative interventions. The preoperative interventions include "extensive preoperative counseling, avoidance of mechanical bowel preparation (MBP), avoidance of fasting, avoidance of premedication, administration of pre- and probiotics, and preoperative carbohydrate loading until 2 h prior to surgery" (Wind et al., 2006). Intraoperative interventions include "strict fluid management to avoid fluid overload, normothermia, hyperoxia, and tailored optimal analgesia"(Fearon et al., 2005). Postoperative interventions include "epidural anesthesia, early routine mobilization, early enteral nutrition, avoidance of nasogastric (NG) tubes, avoidance of peritoneal drains, and early removal of catheters" (Wind et al., 2006). PSH programs contain many of the same components of ERAS, but are expanded in terms of patient care coordination (Cannesson & Kain, 2014).

Models

Different stakeholders have proposed alternative but closely related surgical home models. Two frequently cited models are the Michigan Surgical Quality Collaborative program and the PSH model developed at the University of Alabama at Birmingham.

The Michigan Surgical Quality Collaborative (MSQC) Program: This program is funded by Blue Cross Blue Shield of Michigan and Blue Care Network (BCBSM) (Prager, Moscucci, Birkmeyer, & Arbor, 2005). The program measures surgical outcomes and quality improvement programs in cardiac, bariatric and other areas of general vascular surgery and participating hospitals state-wide and incentivizes these hospitals using a pay-for-participation scheme. (Prager et al., 2005). Hospitals participating in the plan show reductions in operative mortality and complication and lower costs as a result of lower complication rates. However, this program costs nearly \$5 million to implement annually. If the program cannot provide a substantial and sustainable improvement of quality and reduction of cost for these hospitals, the funding will be an issue (Prager et al., 2005).

The UAB model: This model proposes "a seamless continuity of current best practices of care" provided by the anesthesiologists, who are serving as the surgical patient's primary "perioperativist." The model asks for engagement of the patient, family, and other healthcare provide and emphasizes shared decision-making (Vetter, Goeddel, et al., 2013). In the UAB Perioperative Surgical Home model, anesthesiologists are charged with ensuring continuity of care across the entire perioperative process. (Vetter, Goeddel, et al., 2013). The primary goal of this model is to improve "clinical outcomes and decrease unnecessary resource utilization" (Vetter, Goeddel, et al., 2013).

The UC Irvine Model: Findings from early studies on the UC Irvine PSH program show promising results in terms of improved patient outcomes and efficiency. The UC Irvine PSH program has focused on the development of detailed clinical care pathways that span the perioperative spectrum in certain surgery lines. Findings from a small-scale study following the implementation of PSH care pathways in the joint surgery line showed no incidence of major complication or death, low perioperative blood transfusion rates (6.2%), and median length of stay of 3 days (Garson et al., 2014).

2. EARLY PATIENT ENGAGEMENT

Data Sources and Search Strategy

The search terms for this topic included: "early patient engagement" and "perioperative surgical home" which retrieved 25 results, "early patient engagement" and "patient-centered coordinated surgery program" which retrieved 3 results, and "early patient engagement" and "cost" or "outcome" which retrieved 15 results.

After a detailed review of these articles, we only selected those papers that focused on programs and efforts to engage patients in the surgery process before the scheduled surgery. The final number of peer-reviewed articles for this topic was 23. See Appendix B for a detailed description of these articles.

The literature studied under this topic falls into three sections: the effect of early patient engagement on the patient's risk assessment, the effect of early patient engagement on OR efficiency improvement, and the effect of early patient engagement and surgical outcomes.

Early Patient Engagement on Patient's Risk Assessment

Previous research shows efforts and initiatives to engage patients early is beneficial to both the patient and the healthcare enterprise by creating open communications, supporting and educating patients to make decisions and participate in the process of undergoing surgery, and reducing unrealistic expectations (Carli, Charlebois, Baldini, Cachero, & Stein, 2009; Ergina, Gold, & Meakins, 1993; Ferschl, Tung, Sweitzer, Huo, & Glick, 2005; Knox, Myers, Wilson, & Hurley, 2009; Leichtle, Mouawad, Welch, Lampman, & Cleary, 2012).

A critical paper in the initial research into early patient engagement studied the effects of preoperative care on patients with COPD (Ergina et al., 1993). This used "patient education to promote postoperative compliance, cessation of smoking, training in breathing techniques, deep breathing exercises, or incentive spirometry, and if needed, weight reduction" as preoperative care measures (Ergina et al., 1993). To ascertain which patients needed these measures, the providers in this study provided a risk assessment for each patient to ascertain risk level and

tailored the care management for different risk profile patient. They concluded the preoperative risk assessment is important since it leads to "appropriate perioperative management strategies" to get optimal outcomes (Ergina et al., 1993). This study was the impetus for the emphasis on preoperative risk assessments in later early patient engagement literature. For example, more recent research studying colorectal surgery found that preoperative evaluations helped to distinguish patients requiring more intensive postoperative surveillance for anastomotic leakage and to reduce complications (Leichtle et al., 2012). Another study found that preoperative risk assessment can accurately predict non-home discharge, which can assist in the coordination of care and potentially reduce costs by minimizing hospital stays for these patients (Pattakos, Johnston, Houghtaling, Nowicki, & Blackstone, 2012).

A study by Knox and colleagues (2009) shows that standardizing the preoperative assessment process by reducing "redundancy, avoiding surgery delays and cancellations, [and] improved reimbursement coding, [preoperative testing could] offset the increased costs of setting up and running the clinic" (Knox et al., 2009). The standardizing process includes collecting complete patient history and results of physical examinations; coordinating the surgical, anesthesiology, and nursing assessments; ordering tests; and providing information for documentation and billing (Knox et al., 2009).

However, other researchers found that abnormal preoperative tests have limited ability to predict adverse perioperative outcomes(Fritsch et al., 2012). Similarly, Mythen affirmed the positive influence of preoperative clinic, but questioned the timing of preoperative evaluation in the setting studied (Mythen, 2011). According to Mythen, the preoperative evaluation should take place before the initial surgical evaluation, which gives patients an opportunity to participate in the decision as to whether or not the surgery is necessary (Mythen, 2011).

Recent research has also focused on the efficacy of 'prehabilitation,' or prescribed exercise programs before surgery to reduce postoperative complications and/or speed up recovery. A literature review on this topic found that preoperative aerobic exercise was associated with reduced postoperative and ICU stay and improved postoperative physical fitness (O'Doherty, West, Jack, & Grocott, 2013).

Early Patient Engagement and OR Efficiency Improvement

Other research focuses on the reduction of operating room (OR) cancellations and delays by preoperative program (Correll et al., 2006; Ferschl et al., 2005). Ferschl et al. reviewed all 6 month surgical cases of University of Chicago Hospitals and found a visit to an anesthesia preoperative medicine clinic (APMC) were associated fewer same-day surgery cancellation and an earlier room entry time than the non AMPC patients (Ferschl et al., 2005). Correll and colleagues found similar results in a study of 5,083 patients in a preoperative clinic at Brigham and Women's Hospital in Boston. They also found that preoperative evaluation was useful in identifying and resolving medical issues through information retrieval or testing (Correll et al., 2006). Later articles brought out the issue of the impact of the preoperative clinic beyond surgery cancellations. Glick confirmed APMCs could decrease perioperative morbidity and mortality, as well as improve OR efficiency by reducing OR turnover time and cancellations (Glick, Tung, Ferschl, & Sweitzer, 2006).

Early Patient Engagement and Surgical Outcomes

Preoperative education and counseling have been shown to improve surgical outcomes in multiple studies. For example, a study by Jones and colleagues in 2011 on knee joint arthroplasty patients shows that a preoperative education program significantly reduces the length of stay after surgery, and lower complication and readmission rates within 3 months of discharge (Jones et al., 2011). Carli and colleagues investigated the impact of a series of coordinated programs on colonic surgery outcomes. The coordinated programs included "preoperative patient education and counseling, a laparoscopic approach, provision of postoperative epidural analgesia, early food intake and mobilization, and structured surgical and nursing care practices" (Carli et al., 2009). The results show that those coordinated programs are feasible and have positive effect on readmission rates (Carli et al., 2009).

Preadmission behavior counseling may also have an effect on clinical outcomes. Mayo et al. reported that preoperative exercise may influence recovery of functional capacity after colorectal surgery (Mayo et al., 2011).

Wong et al. reviewed short-term preoperative smoking cessation and found smoking cessation more than four weeks before surgery may decrease the risk of postoperative respiratory complications (Wong, Lam, Abrishami, Chan, & Chung, 2012).

Note that many enhanced recovery programs include preoperative patient engagement and management. See the literature in section 5 for more information.

The Role of the Anesthesiologist

Thilen et al. explored the opportunity for anesthesiologists to add value by controlling preoperative resources (S. Thilen, Treggiari, & Weaver, 2012). Using a 20% n ational random sample of Medicare part B claims data from 2006, they found a large number use of preoperative consultations and preoperative testing for low risk patients who had ordinary procedures. They suggested more rational use of these tests, which could achieve considerable savings. According to Thilen, "Anesthesiologists are well positioned to guide and implement such use" (S. Thilen et al., 2012).

3. REDUCED PRE-OP TESTING

Data Sources and Search Strategy

The search terms for this topic included: "perioperative surgical home" and "reduced preoperative testing" which retrieved 23 results, "preoperative" and "cost" or "outcome" which retrieved 55 results, "Unnecessary testing " or " duplicative testing" " and "cost" or "outcome" which retrieved 67 results.

After a detailed review of these articles, we only selected those papers that focused on programs and efforts to reduce unnecessary preoperative testing before the scheduled surgery. The final number of peer-reviewed articles for this topic was 25. See Appendix C for a detailed description of these articles.

The literature studied under this topic falls into two categories: cost reductions as a result of preoperative testing and the effect of reduced preoperative testing on surgical outcomes.

Cost Reductions as a Result of Decreased Preoperative Testing

The costs of preoperative testing are considerable (Chung, Yuan, Yin, Vairavanathan, & Wong, 2009). Minimizing unnecessary preoperative tests could reduce nationwide healthcare costs by \$10 billion and actually improve patient experience and care (Brown & Brown, 2011). Early research results on PHS models and programs have shown promising results in terms of reduced testing.

In 2005, Finegan and his colleagues found that selective ordering of investigations by anesthesiology staff as opposed to non-anesthesiologist staff decreased the number and cost of testing, saving the clinic on average \$73/patient (Finegan, Rashiq, McAlister, & O'Connor, 2005). Clinical decision support systems have also reduced unnecessary preoperative tests and reduced costs (Procop, Yerian, Wyllie, Harrison, & Kottke-Marchant, 2014). Various other studies have shown that routine testing, rather than selective testing, accrues no benefit to the patient population but excessive costs to the healthcare organization (Cooper et al., 2013; J. P. Fischer et al., 2014; Mantha et al., 2005; Sousa Soares et al., 2013).

Effect on Clinical Outcomes

Canadian researchers investigated the possibility of eliminating the preoperative tests without escalation of "the perioperative incidence of adverse events" in an ambulatory surgry setting and found that patients that did not receive standard preoperative tests showed no increase in adverse perioperative events compared to those who did (Chung et al., 2009). This is even supported for vulnerable populations. Aarts and colleagues reviewed previous literature and found that for the majority of older patients with well-controlled coexisting diseases, routine lab testing is a waste of resources (Aarts et al., 2012).

However, some studies do find beneficial clinical outcomes for preoperative evaluations. For example, Vazirani and colleagues found that "a structured medical preoperative evaluation may benefit medically complex patients and improve perioperative processes and outcomes" (Vazirani, Lankarani - Fard, Liang, Stelzner, & Asch, 2012).

Factors Contributing to Excessive Preoperative Testing

Researchers from the University of Arizona identified five key factors related to unnecessary preoperative tests through provider surveys. (Huesch, 2013). They found that "practice tradition, belief that other physicians want the tests done, medicolegal wrries, concerns about surgical delays or cancellation, and lack of awareness of evidience and guidelines" prompted the excessive testing. (Huesch, 2013). These tests may, in many cases, be performed even when not indicated by testing guidelines; one study found that only 12.1% of surgical patients received testing that complied with institutional recommendations; this cost the institution an estimated \$200,000 (Siriussawakul et al., 2013). Another study found that too many tests are performed perioperatively due to a lack of perioperative data sharing (Frost, 2012). Frost suggested that better communication with surgeons, consultants, and patients could impvore healthcare needs and decrease costs at simultaneously.

4. INTRAOPERATIVE EFFORTS LEADING TO BETTER EFFICIENCY

Data Sources and Search Strategy

The search terms for this topic included: "intraoperative efficiency" and "perioperative surgical home" which retrieved 8 results, "reducing delays" and "surgical facility "or" equipment" or" devices utilized" which retrieved 35 results, and "intraoperative efficiency" and "patient-centered coordinated surgery program" which retrieved 3 results.

After a detailed review of these articles, we only selected those papers that focused on programs and efforts leading to greater efficiencies in the surgery process. The final number of peer-reviewed articles for this topic was 22. See Appendix D for a detailed description of these articles.

The literature studied under this topic falls into two sections: OR efficiency and reduction of delays.

Delays

Rotondi and his colleagues benchmarked the perioperative process by designing and applying a real-time patient routing system to trace the patient throughout the perioperative process to predict delays (Rotondi et al., 1997). They summarized three major causes of OR delay: patient issues, such as insurance problems, tardiness, lack of adherence to preoperative protocol, or complications; system issues, such as unavailability of tests, transportation delays, unavailability or malfunction of equipment, or insufficient post-procedure care beds; and practitioner issues, such as tardiness, lack of consent, or unavailability of anesthesiologists or OR staff. (Rotondi et al., 1997). Their study found that the real-time patient routing system was very useful to decrease OR delays and improve perioperative surgery efficiency (Rotondi et al., 1997).

Cosgrove and colleagues performed an audit of the perioperative process in an urgent surgery setting and then disseminated guidelines for reducing delays and performed a second audit. They found "a significant reduction of delays, a significant increase in the availability of surgeons and a significant decrease in the median waiting time for urgent surgery compared to the first audit cycle and a previous standard" (Cosgrove, Gaughan, Snowden, & Lees, 2008). Another method to reduce delays was implemented in the PSH model developed by the University of Alabama at Birmingham. It mitigates the risk of case delays and cancellations on the day of surgery by using a real-time electronic dashboard to ensure access electronic medical record and efforts of the preanesthesia clinic (Vetter, Goeddel, et al., 2013).

Overall Efficiency

One study examined the influence of deliberate perioperative system design on operative room throughput (Sandberg et al., 2005). The authors designed a three-room suite including an OR, a preoperative preparing room,

and an early recovery area. By changing traditional sequential activates to parallel design, the new workflow processed more cases per day and used less time for both operative and non-operative processes. The results proved that deliberate OR and perioperative process redesign can improve throughput without sacrificing quality (Sandberg et al., 2005). Newman et al.suggest that preanesthesia clinics can increase efficiencies if they are run in the conjunction with the rest of the perioperative process but can be difficult to implement successfully if they are not (M. F. Newman et al., 2013). A recent initiative at the Mayo clinic used Lean and Six Sigma methodologies to streamline OR processes by creating a value stream map depicting personnel, information processing, and time at each step. The newly designed process yielded decreased wait times, increased on-time arrivals and starts, decreased turnover and operating time, and increased operating margin (Cima et al., 2011).

Improved Quality of Care

One study investigated whether laparoscopic same-day surgery, which is associated with shorter operating time, improved or hurt patient outcomes and found that odds of postoperative complications increased with increased operating time, indicating that faster operations (i.e. laparascopic surgery) may improve patient care (Jackson, Wannares, Lancaster, Rattner, & Hutter, 2011). Other studies found that surgical team dynamics (as measured by action-team learning) and continuous quality improvement efforts can improve outcomes, patient safety, and quality of care (Vashdi, Bamberger, & Erez, 2013; Vetter, Ali, & Boudreaux, 2012)

5. POSTOPERATIVE CARE INITIATIVES

Data Sources and Search Strategy

The search terms and results for this topic included: "Post-procedural care initiatives" and "surgical home" which retrieved 2 results, "post-procedural" and "surgical home" which retrieved 33 results, and "care initiatives" and "surgical home" which retrieved 3 results. Search results were then each reviewed to determine their relevancy to the defined topic area. Only one of the findings from these searches was deemed relevant to the topic area so the general term "perioperative surgical" term was added; this search yielded 37 results, seven of which were relevant for a total of eight. These eight search results were added to the publications provided by ASA. Finally, the entire final collection of 228 included publications was then reviewed by researchers to determine which fit this topic area.

After a detailed review of these articles, we only selected those papers that focused on programs and initiatives related to best procedural care processes. The final number of peer-reviewed articles for this topic was 19. See Appendix E for a detailed description of these articles.

Leading Initiatives

Kehlet & Mogensen introduced fast-track surgery in 1999 to improve recovery and length of stay (Kehlet & Mogensen, 1999). The goal of fast-track protocols is to both quicken patient recovery and reduce morbidity; the former often results in shorter length of stay and thus decreased cost, but the primary aim is patient care (Aboulian, Hassan, Lin, Kaji, & Kumar, 2010). Enhanced recovery after surgery (ERAS) programs were developed around the fast-track surgery strategy to decrease complications and to hasten patient recovery, encouraging early discharge (Aarts et al., 2012). ERAS programs have been shown to reduce postoperative hospital stay (Knott et al., 2012; Ramirez et al., 2011; Ren et al., 2012; Sammour, Zargar-Shoshtari, Bhat, Kahokehr, & Hill, 2010).

The ERAS initiative has garnered increasing support since its introduction. A group comprised of surgeons that investigate best practices founded the ERAS society to support the initiative; they have recently published three new and updated surgery specific guidelines (Gustafsson et al., 2012; Kristoffer Lassen et al., 2012; Society, 2013). The ERAS society's research focus is stated well by Urbach & Baxter: "The immediate challenge to improving the quality of surgical care is not discovering new knowledge, but rather how to integrate what we already know into practice" (Urbach & Baxter, 2005).

Other initiatives relate to changes in types of anesthesia provided to manage postoperative pain. For example, one study investigated the effect of TAP (tranverse abdominis plane) blocks after laparoscopic surgery and found that the use of TAP reduced hospital stay by 1 day and the patient's need for narcotics (Favuzza, Brady, & Delaney, 2013).

Clinical Outcomes

The literature shows time and again that ERAS programs decrease hospital length of stay; this is achieved by faster recovery after procedures that adhere to ERAS protocols. A study of an enhanced recovery program for colorectal resections in five European cites showed that protocol adherence declined in the postoperative phase, suggesting that increased organization of care may improve adherence (Maessen et al., 2007). The University of Alabama Perioperative Surgical Home employs one anesthesia-intensivist to work with a group of mid-level providers to provide consistent, focused postoperative care as opposed to standard postoperative care provided twice a day by the surgical attending physician (Vetter, Goeddel, et al., 2013).

The Role of the Anesthesiologist

A team approach will improve the implementation of ERAS programs and associated outcomes (Kahokehr, Sammour, Zargar-Shoshtari, Thompson, & Hill, 2009). By increasing the role of the anesthesiologist in the perioperative process, efficiency and communication could be improved, decreasing morbidity and mortality that are caused by errors and insufficient care coordination (Warner, 2011).

6. REDUCED POSTOPERATIVE COMPLICATIONS

Data Sources and Search Strategy

The search terms and results for this topic included: "reduced complications" and "surgical home" retrieved 27 results and "efficiency" and "surgical home" retrieved 190 results. Search results were then each reviewed to determine their relevancy to the defined topic area. Six search results of the total 195 hits were added to the publications provided by ASA. The entire final collection of 228 publications was then reviewed by researchers to determine which fit this topic area.

After a detailed review of these articles, we only selected those papers that focused on programs and efforts to reduce postoperative complications. The final number of peer-reviewed articles for this topic was 31. See Appendix F for a detailed description of these articles.

Overview

This topic area looks to specific examples of improvements in postoperative complications. Hospital performance is increasingly being measured by rates of complication rates (Krupka, Sandberg, & Weeks, 2012). Surgical complications increase the cost of care and can reach up to \$58,000 per case, depending on the associated severity; the average cost of surgical complications in 2010 dollars was \$35,465, which was \$17,000 more than for patients who did not experience complications (Krupka et al., 2012).

Clinical Outcomes

Collaborative efforts have been shown to reduce complications, mortality, and costs. Complications for those in the ERAS group of an elective colonic surgery were found to be significantly fewer (Sammour et al., 2010). The Blue Cross Blue Shield Cardiovascular Consortium of Michigan efforts decreased hospital mortality by 25 percent in the first four years, the Keystone Collaborative decreased blood-stream associated infections by 66 percent in two years (saving \$160 million), and the Northern New England Cardiovascular Consortium reduced hospital mortality by 24 percent by holding an intervention focused on data feedback and quality improvement. (Campbell, 2009).

Two articles discuss the potential to manage postoperative delirium (POCD) through the PSH and similar programs (Crosby, Culley, & Dexter, 2014; Krenk et al., 2014). POCD is a common postoperative complication of geriatric

surgical patients. This complication is frequently overlooked and not well managed, so there are opportunities for the PSH to increase awareness and treatment for these patients (Crosby et al., 2014).

Factors Related to Complications

Better communication of details of procedures and postoperative patient responsibilities may improve complication factors contributing to postoperative complications, including perioperative feeding, mobilization, pain control, and respiratory hysiotherapy (Gustafsson et al., 2012). Counseling, printed materials, and multimedia information are common examples of patient educations tools.

While ERAS and other quality control programs can improve complication rates, there are other factors to consider. Fritsch et al. (2012) found that age, surgery type, and medical history are the best predictors of perioperative complications (Fritsch et al., 2012). Similarly, Khuri and colleagues found that the greatest indicator of patient survival was the occurrence of a major postoperative complication within 30 days of the operation (S. Khuri, 2005). The geriatric population is prone to multiple comorbidities, putting elderly patients at higher risk of in-hospital complications, longer in-hospital recovery, and postoperative institutionalization (Batsis et al., 2007). Nutritional state can also predict postoperative complications; hand grip has been found to reliably indicate a patient's nutritional state (Guo, Zhang, Ma, Zhang, & Huang, 1996).

7. CARE COORDINATION AND TRANSITION PLANNING

Data Sources and Search Strategy

The search terms and results for this topic included: "care coordination" and "surgical home" which retrieved 13 results, "transition planning" and "surgical home" which retrieved 3 results, "inpatient procedures" and "surgical home" which retrieved 1 result, "skilled nursing facilities" and "surgical home" which retrieved 1 result, "rehabilitation centers" and "surgical home" which retrieved 2 results, "cost reduction" and "surgical home" which retrieved 12 results, "post surgery" and "care coordination", which retrieved 11 results, "post surgery" and "transition planning", which retrieved 3 results, "after surgery" and "transition planning", which retrieved 3 results, "after surgery" and "care coordination" which retrieved 15 results. Search results were then each reviewed to determine their relevancy to the defined topic area. 9 of the 16 search results were added to the publications provided by ASA. Finally, the entire final collection of 228 included publications was then reviewed by researchers to determine which fit this topic area.

After a detailed review of these articles, we only selected those papers that focused on programs and efforts related to transition planning and care coordination after surgery. The final number of peer-reviewed articles for this topic was 57. See Appendix B for a detailed description of these articles.

Leading Initiatives – Surgical Home Example

The University of California, Irvine Health has developed a prospective Urology Surgical Home model that focuses on communication during transitions, pain management, patient education, and early problem detection. "The Urology Surgical Home seeks to establish a system of coordinated care that increases value for every dollar spent on the surgical care of the patient. This is achieved through standardization, improved clinical outcomes and appropriate resource utilization by providing patient-centered care throughout the entire surgical continuum" (Vakharia, Mentor, Kain, & MBA, 2013). Patient enrollment begins in October 2013 and the program will provide a higher degree of care coordination. This program is expected to decrease complications, thus decreasing length of stay and reducing readmissions (Vakharia et al., 2013).

Clinical Outcomes and Cost Reductions

A meta-analysis of randomized trials of colorectal surgery found that patients in ERAS programs were less prone to postoperative complications and shorter overall hospital length of stay (Eskicioglu et al., 2009). However, England's Enhanced Recovery Partnership Programme highlighted the necessity of consistent tracking measures of patient outcomes, as ERAS protocols are not standardized and not implemented consistently at all hospitals (Knott et al., 2012). Aarts and colleagues found the following ERAS elements to be most closely associated with improved clinical outcomes, particularly decreased length of stay: preoperative counseling, intraoperative fluid restriction, clear fluids on the day the procedure, and catheter discontinuation within one to three days depending on surgery type (Aarts et al., 2012). Hospitals participating in the Michigan Surgical Quality Collaborative, a quality-assurance program focused on improved data recording and sharing to improve perioperative surgical outcomes, saw decreased complications and morbidity after its implementation Campbell Jr et al. (2010). Furthermore, Kariv and colleagues found that fast-track colorectal surgery significantly decreased direct costs per patient almost 1,000 (Kariv et al., 2007), and in a similar study Roulin and colleagues calculated a reduced cost of €1,561 (Roulin et al., 2013).

One criticism of fast-track surgery is that the reduced length of stay results in negative postoperative outcome after discharge (Bardram, Funch-Jensen, Jensen, Kehlet, & Crawford, 1995). For example, one postoperative survey of coronary bypass surgery found significant deficiencies in the current state of postoperative care, including patient pain and patient and caretaker lifestyle adjustments (Theobald & McMurray, 2004). A similar survey of colorectal patients found that discharge protocol did not prepare patients for the extreme fatigue, bowel disturbances, nausea, and anxiety experienced after discharge (Wennström, Stomberg, Modin, & Skullman, 2010). Patients cite a lack of individualized information, inconsistent advice from healthcare professionals, a lack of predischarge care (Mcmurray, Johnson, Wallis, Patterson, & Griffiths, 2007). Efforts to improve individualized discharge information and care improve both patient satisfaction and improved recovery after surgery (Cornell, Horton, Pamela Williams Russo MD, Paget, & Charlson, 2007; Ellison et al., 2004)

Care Coordination and Postoperative Education Initiatives

Postoperative care coordination may be lacking in many surgical settings (Toscan, Manderson, Santi, & Stolee, 2013). Some health care organizations have attempted to improve care coordination by the use of e-health platforms, where patients can self-report outcomes and interact with care plans. One study of such a program found that patients were able to effectively use the e-health platform and that self-reported data from this program accurately predicted length of stay and discharge home (Cook et al., 2013). Another program attempted to improve care coordination by using a nurse-led post-discharge telephone follow up program but had limited success (J. M. Young et al., 2013).

Other practices have attempted to improve postoperative medication adherence and care coordination by improving preoperative medication documents. Preliminary results show that improved preoperative medication information may improve postoperative medication adherence and reduced pre- and postoperative anxiety (Miguel & Sagardoy, 2014; Vetter, Downing, Vanlandingham, Noles, & Boudreaux, 2014).

The Role of the Anesthesiologist

Not all clinicians are familiar with ERAS programs and care coordination. Successful ERAS implementation will require multidisciplinary support to avoid common hurdles (Melnyk, Casey, Black, & Koupparis, 2011). The anesthesiologist can coordinate services to improve communication and can address system issues that lead to suboptimal outcomes (Warner, 2011).

TABLE 3. ARTICLES BY SURGICAL SPECIALTY				
Specialty	Preoperative	Intraoperative	Postoperative	Perioperative
Abdominal			Klidjian et al. (1980) Putwana et al. (2005) Schaefer et al. (1990)	
Colorectal	Levick et al. (2013) Mayo et al. (2011) Siddel (2013) Siriussawal et al. (2013) Sousa Soares et al. (2013) Thilen et al. (2013)	Hendren et al. (2011) Jackson et al. (2013) Vetter, Ali et al. (2012) Wongyingsinn et al. (2011)	Hendren et al. (2011) Leichtle et al. (2012) Wennstrōm et al. (2010)	Aarts et al. (2012) Aboulian et al. (2010) Abraham and Albayati et al. (2011) Adamina et al. (2013) Archibald et al. (2011) Bardram et al. (1995) Boothe and Finegan (1995) Boothe and Finegan (1995) Boudreaux and Vetter (2013) Caplan et al. (1999) Carli et al. (2009) Clark and Spanswick (2013) Delaney et al. (2009) Favuzza et al. (2013) Gustafsson et al. (2012) Hardt et al. (2003) Kahokehr et al. (2009) Kariv et al. (2007) Kehlet (2011) Khuri et al. (1997) Khuri et al. (2002) Kolozsvari et al. (2002) Kolozsvari et al. (2002) Kolozsvari et al. (2009) Lemmens et al. (2009) Loyd et al. (2010) Maessen et al. (2007) Miller et al. (2009) Loyd et al. (2010) Maessen et al. (2007) Miller et al. (2014) Mohn et al. (2009) Nascimbeni et al. (2009) Pawe et al. (2011) Ren et al. (2012) Robinson

General & Cosmetic	Bilku et al. (2014) Cooper et al. (2013) Fischer et al. (2014) Guo et al. (1996) Jones et al. (2011) Mantha et al. (2005) Miguel and Sagardoy (2014) Nepomnayshy et al. (2013) Nielsen et al. (2010) Sharareh et al. (2014)	Ilfield et al. (2005) Ilfield et al. (2006) Ilfield et al. (2010) Nuelle and Mann (2007) Taicher et al. (2011) Trentman et al. (2010) Williams et al. (1998a) Williams et al. (1998b)	Cambell et al. (2010) Cornell et al. (2007) Graham et al. (2014) Holm et al. (2013) Krenk et al. (2014) McMurray et al. (2007) Miguel et al. (2014) Sharareh et al. (2014)	Sammour et al. (2010) Teeuwen et al. (2010) Varadhan et al. (2010) Vetter et al. (2012) Vetter et al. (2013) Wiklund and Rosenblaum (1997a) Wiklund and Rosenblaum (1997b) Wind et al. (2006) Young et al. (2007) Young et al. (2013) Young et al. (2014) Batsis et al. (2007) Fink et al. (2007) Garson et al. (2014) Hebl et al. (2008) Henderson et al. (2007) Huddleston et al. (2004) Lassen et al. (2012) Macario et al. (1995) Prager et al. (2001)
	Sigmundsson et al. (2014) Swank et al. (2011) Topp et al. (2009) Trentman et al. (2010)			Raphael et al. (2011) Shyu et al. (2012) Toscan et al. (2013)
Pediatric	Holland et al. (2014) Pasquali et al. (2012)		Holland et al. (2014)	Tait et al. (1997)
Thoracic	Finegan et al. (2005) O'Brien et al. (2013) O'Doherty et al. (2013) Pattakos et al. (2013) Veronovici et al. (2013) Walters et al. (2014)	Lako et al. (2014)	Leandro-Merhi et al. (2011) Pattakos et al. (2013) Rinehart et al. (2012) Schaefer et al. (1990) Theobald and McMurray (2004) Walters et al. (2014)	Cook et al. (2013) Fearon et al. (2005) Huesch (2011) Huesch (2013) Lee et al. (2013) Prager et al. (2005) Veronovici et al. (2013)
Trauma	Pearse et al. (2001)	Cosgrove et al. (1998) Pearse et al. (2001)		
Transplant			Garonzik-Wang et al. (2012)	
Vascular				Campbell et al. (2010) Hutter et al. (2007) Johnson et al. (2007) Prager et al. (2005)
Urology			Ellison et al. (2004)	
Multi- Specialty	Bader et al. (2009) Badner et al. (1998) Baron et al. (2014) Brown and Brown (2011)	Cima et al. (2011) Dexter et al. (2014) Fernandez et al. (2014) Gillespie et al. (2012)	Ben-Ishay et al. (2011) Crosby et al. (2014) Kim et al. (2014) Vetter et al. (2014b)	Birkmeyer et al. (2012) Butterworth and Green (2014) Campbell (2009) Cannesson and Kain (2014)

Chung et al. (2009)	Jacques et al. (2006)	Cheng (2013)	
e	· · ·		
Correll et al. (2006)	Kim et al. (2009)	Dasgupta et al. (2009)	
Dexter et al. (2014)	Lagasse et al. (1995)	Dexter and Wachtel (2014)	
Fernandez et al. (2014)	Rockall and Demartines (2014)	Ergina et al. (1993)	
Ferschl et al. (2005)	Rotondi et al. (1997)	Finks et al. (2011)	
Fischer (1996)	Sandberg et al. (2005)	Fleisher et al. (2007)	
Garcia et al. (2014)	Sear (2014)	Fried et al. (2001)	
Gibbs et al. (1999)	Segev et al. (2012)	Fried et al. (2004)	
Glick et al. (2006)		Fritsch et al. (2012)	
Holt et al. (2007)		Frost (2012)	
Hooper (2013)		Goldhill et al. (2012)	
Huck and Lewandrowski (2014)		Grocott and Pearse (2012)	
Kastenberg et al. (2012)		Holt (2014)	
Kehlet (1997)		Huang and Schweitzer (2014))
Kim et al. (2014)		Hunt et al. (1985)	
Knox et al. (2009)		Kain et al. (2014)	
Newman et al. (2013)		Kaplan et al. (1985)	
Parker et al. (2010)		Kehlet and Dahl (2003)	
Pasternak (2009)		Kehlet and Mythen (2011)	
Pollard and Garnerin (1999)		Kilo and Wasson (2010)	
Procop et al. (2014)		Knott et al. (2012)	
Qaseem et al. (2006)		Krupka et al. (2012)	
Raes and Poelaert (2014)		Lee et al. (2011)	
Sear (2014)		Mackey (2012)	
Vetter et al. (2014b)		Murphy et al. (2000)	
White et al. (2012)		Mythen (2011)	
Wijeysundera et al. (2009)		Mythen et al. (2012)	
Wijeysundera et al. (2012)		Newman et al. (2006)	
		Oates et al. (2000)	
		Ryan et al. (2004)	
		Seim and Sandberg (2010)	
		Shafer and Donovan (2014)	
		Share et al. (2011)	
		Stenholm et al. (2008)	
		Szokol and Stead (2014)	
		Varadhan et al. (2010)	
		Vazirani et al. (2012)	
		Vetter et al. (2012)	
		Vetter et al. (2014a)	
		Vischer et al. (2014) Vischer et al. (2012)	
		Watters (2002)	
		Webb et al. (1989)	
		webb et al. (1989)	

PHASE 2: REVIEW OF NON-PEER-REVIEWED LITERATURE

Trends in Healthcare Improvement

Population demands for healthcare quality improvement are widespread and on the increase. Patients are demanding increased communication between providers, patients and families (Bakhtiari, 2010; Institute for Healthcare Improvement, 2003) and improved mechanisms for and incorporation of patient feedback (Bakhtiari, 2010). Furthermore, there is an increased demand for prehabilitation due to aging population, changing population expectations, and advances in healthcare technology and practice (Landry et al., 2006). All the while, as costs rise and continue to rise, particularly related to surgery, government, payors, and others demand increased OR efficiency (Bakhtiari, 2010). To respond to these pressures, many organizations, such as the ERAS society, the ASA, and the AAGBI (Association of Anaesthetists of Great Britain and Ireland), have developed surgical guidelines to enable members to follow best practices (Gustafsson et al., 2012; Smith, McWhinnie, & Jackson, 2011; The Association of Anaesthetists of Great Britain and Ireland, 2010).

Recently, the ASA has issued a report as part of the 'Choosing Wisely' campaign of the ABIM foundation to guide physicians and patients in the surgical decision making process. Topics discussed include recommendations against preoperative testing and certain blood management techniques for patients with no comorbidities undergoing low-risk surgery (Onuoha, 2013).

The Perioperative Surgical Home Overview

As a response to these increasing demands in the healthcare arena, the ASA and others have proposed the surgical home. In particular, the movement toward ACOs creates an opportunity for anesthesiologists to expand their practice through the perioperative surgical home (Johnstone, 2012a). According to previous ASA president Mark Warner (Warner, 2012), a successful surgical home must incorporate the following elements:

- Earlier anesthesiologist/hospitalist access to patients
- Increased preoperative counseling by anesthesiologists
- Increased communication between providers and patients
- Anesthesiologist involvement in protocol development
- Coordination of postoperative care to reduce pain, complications, morbidity, and mortality

The Committee for Future Models of Anesthesia Practice (CFMAP) of the ASA has recently compiled leading best practices for PSH programs in each of these areas. These best practices are augmented by specific recommendations, supporting published literature, and possible metrics to measure success (Commission for Surgical Anesthesia & Committee for Future Models of Anesthesia Practice, 2014).

Developing a PSH in a pre-existing surgical arena may be very difficult to implement. For many practices, developing a PSH may in fact be a consolidation of smaller existing teams, rather than an entirely new organization in many hospitals. Creating a preoperative clinic or anesthesiologist-based screening process may be a good place to start (Hertzberg, 2013). Research shows that many low-risk patients are receiving unnecessary preoperative testing, increasing costs and also risk to patient (S. Thilen et al., 2012), and anesthesiologists have already proven a valuable role in reducing preoperative testing and thus costs (Carrillo, 2012; Newswise.com, 2013).

The Role of the Anesthesiologist

Anesthesiologists are well suited for a perioperative management role due to unique position and knowledge of perioperative care requirements (Johnstone, 2012b) and the fact that many anesthesiologists also have business training (Johnstone, 2012b; Peterson, 2011). However, an anesthesiologist-led surgical home may require additional anesthesiologist training, particularly related to postoperative care (UC Irvine, 2013). One criticism of the surgical home is that it may 'step on toes' for other providers, particularly hospitalists. However, at least in some surgical homes, the concept of an anesthesiologist-led surgical home has been well received by hospitalists and other anesthesiologists (UC Irvine, 2013). For a surgical home to provide an improved patient experience, coordination between anesthesiologists and other providers, such as hospitalists, is not only possible but necessary (Adesanya & Joshi, 2007; Merli, 2005).

Payment Arrangements

The issue of payment is a primary barrier to the implementation of a PSH at many organizations, and yet is also an area where a PSH can have the most impact. Because a PSH may fit well into the ACO model, ACO regulations are of particular interest to those developing surgical homes.

The initial ACO regulations included two shared savings arrangements: the two-sided model, involving 65% shared savings with downside risk for three years, or the one-sided model, involving 52.5% shared savings with no downside risk for three years. A primary criticism of the original ACO program was that it would be costly to implement, with estimates ranging from \$1.7 million up to \$26.1 million, and receiving savings could be difficult due to the extensive quality reporting requirements (Byrd, 2011).

Several changes were made to most recent round of ACO regulations based on comments from the ASA and other organizations (American Society of Anesthesiologists, 2011), including :

- The delay of the first start date until April 1, 2012 and a second start date of July 1, 2012
- Beneficiaries will be identified prospectively with a retrospective reconciliation to improve provider's ability to deliver appropriate care
- Less stringent marketing guidelines and the provision of template language
- Reduction of the required reported quality measures from 65 to 33
- Elimination of downside risk in the one-sided model
- The withdrawal of the required 25% withholding of savings to offset future losses
- Increased caps on shared savings from 10% for the one-sided model and 15% for the two-sided model
- Grants for ACO startup costs for rural and physician-owned practices in shared savings programs

One additional criticism of ACOs and similar integrated health delivery systems was that such systems may violate antitrust laws. However, a recent ruling of the Office of the Inspector General found that integrated healthcare delivery programs do not necessarily violate antitrust provisions (Office of Inspector General, 2013). Generally speaking, even outside of the ACO, the general payment formula for all anesthesia services is shifting from the Relative Value GuideTM published by the ASA to a "base + time + outcome" formula, and the PSH is one way for anesthesiologists to accommodate and remain relevant in this new formula (Cohen, 2013).

Existing Surgical Homes: Featured Models

UAB Medicine:

The surgical home at UAB includes a pre-anesthesia care unit, general operating room services, cardiothoracic operating room services, and a post-anesthesia care unit (UAB Medicine Website, 2013). The general operating room services incorporate 32 operating rooms utilizing technology such as robotics, endovascular surgery, living-related transplants, and many other specialties. The cardiovascular operating room incorporates 8 ORs serving all patient populations and staffed by RNs in a 3-to-1 nurse-to-patient ratio. The post-anesthesia care unit also incorporates 45 preoperative prep holding areas, 47 postoperative care unit, as well as a specialized Women's Anesthesia Care Unit (UAB Medicine Website, 2013). The overall focus is on perioperative monitoring (Paloski, 2013), including preoperative anemia management (Vetter, 2013). All patient information is stored using an EHR to facilitate feedback and feed-forward of patient information (UC Irvine, 2013).

UC Irvine

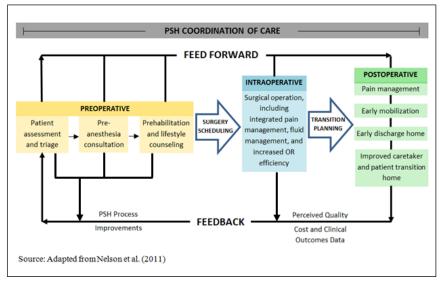
The surgical home at UC Irvine focuses on joint replacement surgeries (Paloski, 2013), although plans to develop a similar surgical home for urology are in the works (Vakharia et al., 2013). The PSH was developed using a Lean Sigma approach, with input from relevant provider stakeholders, including surgeons, anesthesiologists, RNs, social workers, and respiratory therapists (UC Irvine, 2013). Many PSH functions at UC Irvine are carried out through the Center for Perioperative Care (UC Irvine Website, 2013). The goals of this center include surgery optimization, determination of needed pre-anesthesia testing, patient consultation on anesthetic choices, the ability to alert the OR of unusual circumstances or needs, to provide a consultation resource when needed, and to minimize cancellations and delays (UC Irvine Website, 2013). To meet these goals, the center provides anesthesiologist

consultation services, either in the clinic or over the phone; the anesthesiologist does not participate in the needed care (i.e. the preoperative testing) (UC Irvine Website, 2013).

FUTURE RESEARCH: THE PSH AS A HEALTHCARE MICROSYSTEM

Clinical microsystems are "the places where patients, families, and caregivers meet – the places were care is delivered and where outcomes and costs are produced" (Nelson, Fisher, & Weinstein, 2011). The clinical microsystem becomes value added when feed-forward and feedback information is incorporated. Feed-forward information collects data in real time as care is delivered; this data moves with the patient in a useful, understandable way throughout the patient's healthcare experience (Nelson et al., 2011). Feedback information can be used for prospective management of this patient in future care episodes, evaluation and management of individual care. Feedback information simultaneously allows this individual-level data to be accumulated into subpopulations of similar patients to be used as a database for evidence-based practice (Nelson et al., 2011).

The essential process a patient undergoes in a clinical microsystem is as follows:


1. The patient enters and is oriented to the system.

The provider conducts an initial health assessment to create a plan of care that incorporates the patient's health status, health needs, and individual health preferences and values. This step builds off of feed-forward information from prior healthcare experiences, patient history, a physical examination, and diagnostic testing.
 A patient care plan is created that includes all preventive, acute, chronic, and palliative care sensitive to the findings of the previous assessment.

4. As this care plan is carried out, longitudinal measures are collected to assess the patient's clinical status, functional status, patient perceptions of care, as well as direct and indirect cost tracking.

5. These longitudinal measures are used to improve future care for that individual patient and to improve overall care for the populations of similar patients in similar settings.

The perioperative surgical home fits the definition of a healthcare microsystem, as the PSH is where care is planned, delivered and managed, outcomes are achieved, and various providers meet patients and family. As clinical microsystem theory suggests, integrated information system management will be essential to the development of a successful perioperative surgical home. Applying the healthcare microsystems model developed by Nelson et al (2011), the perioperative surgical home as a microsystem could be modeled as follows:

Figure 1. PSH as a Microsystem

In future stages of research, we intend to expand on this model of the perioperative surgical home as a clinical microsystem using results from a national survey of PSH and PSH-like programs.

REFERENCES

- Aarts, Mary-Anne, Okrainec, Allan, Glicksman, Amy, Pearsall, Emily, Victor, J Charles, & McLeod, Robin S. (2012). Adoption of enhanced recovery after surgery (ERAS) strategies for colorectal surgery at academic teaching hospitals and impact on total length of hospital stay. *Surgical endoscopy*, 26(2), 442-450.
- Aboulian, A., Hassan, Z., Lin, M. Y., Kaji, A. H., & Kumar, R. R. (2010). Successful enhanced recovery program after colorectal surgery in a county institution. *Am Surg*, *76*(10), 1158-1162.
- Abraham, N., & Albayati, S. (2011). Enhanced recovery after surgery programs hasten recovery after colorectal resections. *World J Gastrointest Surg, 3*(1), 1-6. doi: 10.4240/wjgs.v3.i1.1
- Adamina, Michel, Gié, O, Demartines, N, & Ris, F. (2013). Contemporary perioperative care strategies. *British Journal of Surgery, 100*(1), 38-54.
- Adesanya, Adebola O, & Joshi, Girish P. (2007). Hospitalists and anesthesiologists as perioperative physicians: Are their roles complementary? *Proceedings (Baylor University. Medical Center), 20*(2), 140.
- American Society of Anesthesiologists. (2011). ASA Analysis of the Accountable Care Organization Final Rule.
- Anthony, Mary K, & Hudson-Barr, Diane C. (1998). Successful patient discharge: A comprehensive model of facilitators and barriers. *Journal of Nursing Administration, 28*(3), 48-55.
- Archibald, L. H., Ott, M. J., Gale, C. M., Zhang, J., Peters, M. S., & Stroud, G. K. (2011). Enhanced recovery after colon surgery in a community hospital system. *Dis Colon Rectum*, 54(7), 840-845. doi: 10.1007/DCR.0b013e31821645bd
- Bader, Angela M, Sweitzer, BobbieJean, & Kumar, Ajay. (2009). Nuts and bolts of preoperative clinics: The view from three institutions. *Cleveland Clinic Journal of Medicine*, *76*(Suppl 4), S104-S111.
- Badner, Neal H, Craen, Rosemary A, Paul, Terri L, & Doyle, Jacqueline A. (1998). Anaesthesia preadmission assessment: a new approach through use of a screening questionnaire. *Canadian journal of anaesthesia*, 45(1), 87-92.
- Bakhtiari, Elyas. (2010). Patient-Centered Surgery *HealthLeaders* (Vol. May 12): Institute for Healthcare Improvement.
- Bardram, Linda, Funch-Jensen, Peter, Jensen, P, Kehlet, H, & Crawford, ME. (1995). Recovery after laparoscopic colonic surgery with epidural analgesia, and early oral nutrition and mobilisation. *The Lancet*, 345(8952), 763-764.
- Baron, DM, Hochrieser, H, Posch, M, Metnitz, B, Rhodes, A, Moreno, RP, . . . Metnitz, P. (2014). Preoperative anaemia is associated with poor clinical outcome in non-cardiac surgery patients. *British Journal of Anaesthesia*, aeu098.
- Batsis, J. A., Phy, M. P., Melton, L. J., 3rd, Schleck, C. D., Larson, D. R., Huddleston, P. M., & Huddleston, J. M. (2007). Effects of a hospitalist care model on mortality of elderly patients with hip fractures. J Hosp Med, 2(4), 219-225. doi: 10.1002/jhm.207
- Ben-Ishay, O., Gertsenzon, H., Mashiach, T., Kluger, Y., & Chermesh, I. (2011). Malnutrition in surgical wards: a plea for concern. *Gastroenterol Res Pract, 2011*. doi: 10.1155/2011/840512
- Bilku, DK, Dennison, AR, Hall, TC, Metcalfe, MS, & Garcea, G. (2014). Role of preoperative carbohydrate loading: a systematic review. *Annals of the Royal College of Surgeons of England, 96*(1), 15-22.
- Birkmeyer, J. D., Gust, C., Dimick, J. B., Birkmeyer, N. J., & Skinner, J. S. (2012). Hospital quality and the cost of inpatient surgery in the United States. *Ann Surg*, 255(1), 1-5. doi: 10.1097/SLA.0b013e3182402c17
- Boothe, P., & Finegan, B. A. (1995). Changing the admission process for elective surgery: an economic analysis. *Canadian Journal of Anaesthesia*, *42*(5), 391-394. doi: 10.1007/BF03015483
- Boudreaux, Arthur M, & Vetter, Thomas R. (2013). The creation and impact of a dedicated section on quality and patient safety in a clinical academic department. *Academic Medicine*, *88*(2), 173-178.
- Brown, Steven R, & Brown, Jaclyn. (2011). Why do physicians order unnecessary preoperative tests? A qualitative study. *Family Medicine-Kansas City*, *43*(5), 338.

Butterworth, John F. IV, & Green, Jeffrey A. (2014). The Anesthesiologist-Directed Perioperative Surgical Home: A Great Idea That Will Succeed Only if It Is Embraced by Hospital Administrators and Surgeons. *Anesthesia & Analgesia, 118*(5), 896-897 810.1213/ANE.0000000000217.

Byrd, Jason R.; Cohen, Norman R.; Singh, Loveleen. (2011). Practice Management: ACOs and the Surgical Home. ASA Newsletter: Practice Management, 75(8).

- Campbell, Darrell A. (2009). Quality improvement is local. *Journal of the American College of Surgeons, 209*(1), 141-143.
- Campbell Jr, Darrell A, Englesbe, Michael J, Kubus, James J, Phillips, Laurel RS, Shanley, Charles J, Velanovich, Vic, . . . Share, David A. (2010). Accelerating the pace of surgical quality improvement: the power of hospital collaboration. *Arch Surg*, *145*(10), 985.
- Campbell Jr, Darrell A, Henderson, William G, Englesbe, Michael J, Hall, Bruce L, O'Reilly, Michael, Bratzler, Dale, . . . Hutter, Matthew M. (2008). Surgical site infection prevention: The importance of operative duration and blood transfusion—results of the first American College of Surgeons–National Surgical Quality Improvement Program Best Practices Initiative. *Journal of the American College of Surgeons, 207*(6), 810-820.
- Cannesson, Maxime, & Kain, Zeev. (2014). Enhanced recovery after surgery versus perioperative surgical home: is it all in the name? *Anesthesia & Analgesia, 118*(5), 901-902.
- Caplan, Gideon, Board, Neville, Paten, Anne, Tazelaar-Molinia, Jodie, Crowe, Philip, Yap, Su-Jen, & Brown, Ann. (1999). DECREASING LENGTHS OF STAY: THE COST TO THE COMMUNITY. *Australian and New Zealand Journal of Surgery, 69*(6), 433-437. doi: 10.1046/j.1440-1622.1999.01441.x
- Carli, F., Charlebois, P., Baldini, G., Cachero, O., & Stein, B. (2009). An integrated multidisciplinary approach to implementation of a fast-track program for laparoscopic colorectal surgery. *Can J Anaesth*, *56*(11), 837-842. doi: 10.1007/s12630-009-9159-x
- Carrillo, Sharon; Ritter, Melody J.; Douglas, James R.; Rubiano, Andre's; Schubert, Armin. (2012). Surgical Home: Anesthesiologist-Directed Preoperative Triage Reduces Unnecessary Testing and Associated Economic Burden.
- Cheng, Davy. (2013). Role of the anesthesiologist in the wider governance of healthcare and health economics. *Canadian Journal of Anesthesia/Journal canadien d'anesthésie*, 1-11.
- Chung, Frances, Yuan, Hongbo, Yin, Ling, Vairavanathan, Santhira, & Wong, David T. (2009). Elimination of preoperative testing in ambulatory surgery. *Anesthesia & Analgesia*, *108*(2), 467-475.
- Cima, Robert R, Brown, Michael J, Hebl, James R, Moore, Robin, Rogers, James C, Kollengode, Anantha, . . . Deschamps, Claude. (2011). Use of lean and six sigma methodology to improve operating room efficiency in a high-volume tertiary-care academic medical center. *Journal of the American College of Surgeons, 213*(1), 83-92.
- Clark, Alexander J, & Spanswick, Christopher C. (2013). Why anesthesiologists need to care about the way chronic pain is managed. *Canadian Journal of Anesthesia/Journal canadien d'anesthésie*, 1-6.
- Cohen, Norman A. . (2013). Quality, Value and ASA. ASA Newsletter: Administrative Update, 77(7).
- Commission for Surgical Anesthesia, & Committee for Future Models of Anesthesia Practice. (2014). Best Practices for PSH. American Society of Anesthesiologists.
- Cook, David J, Manning, Dennis M, Holland, Diane E, Prinsen, Sharon K, Rudzik, Stephen D, Roger, Véronique L, & Deschamps, Claude. (2013). Patient Engagement and Reported Outcomes in Surgical Recovery: Effectiveness of an e-Health Platform. *Journal of the American College of Surgeons, 217*(4), 648-655.
- Cooper, Michol, Newman, Naeem A, Ibrahim, Andrew M, Lam, Edwin, Herman, Joseph M, Singh, Vikesh K, . . . Makary, Martin A. (2013). Unnecessary tests and procedures in patients presenting with solid tumors of the pancreas. *Journal of Gastrointestinal Surgery*, 1-6.
- Cornell, Charles N, Horton, Roberta, Pamela Williams Russo MD, MPH, Paget, Stephen A, & Charlson, Mary E. (2007). Methodological challenges of multiple-component intervention: lessons

learned from a randomized controlled trial of functional recovery after hip fracture. *Hss Journal*, *3*(1), 63-70.

- Correll, Darin J, Bader, Angela M, Hull, Melissa W, Hsu, Cindy, Tsen, Lawrence C, & Hepner, David L.
 (2006). Value of preoperative clinic visits in identifying issues with potential impact on operating room efficiency. *Anesthesiology*, 105(6), 1254-1259.
- Cosgrove, JF, Gaughan, M, Snowden, CP, & Lees, T. (2008). Decreasing delays in urgent and expedited surgery in a university teaching hospital through audit and communication between peri-operative and surgical directorates. *Anaesthesia*, *63*(6), 599-603.
- Crosby, Gregory, Culley, Deborah J, & Dexter, Franklin. (2014). Cognitive Outcome of Surgery: Is There No Place Like Home? *Anesthesia & Analgesia*, *118*(5), 898-900 810.1213/ANE.0000000000216.
- Dasgupta, M., Rolfson, D. B., Stolee, P., Borrie, M. J., & Speechley, M. (2009). Frailty is associated with postoperative complications in older adults with medical problems. *Arch Gerontol Geriatr*, 48(1), 78-83. doi: 10.1016/j.archger.2007.10.007
- Delaney, CP, Fazio, VW, Senagore, AJ, Robinson, B, Halverson, AL, & Remzi, FH. (2001). 'Fast track' postoperative management protocol for patients with high co-morbidity undergoing complex abdominal and pelvic colorectal surgery. *British Journal of Surgery*, *88*(11), 1533-1538.
- Dexter, Franklin, Maxbauer, Tina, Stout, Carole, Archbold, Laura, & Epstein, Richard H. (2014). Relative influence on total cancelled operating room time from patients who are inpatients or outpatients preoperatively. *Anesthesia & Analgesia, 118*(5), 1072-1080.
- Dexter, Franklin, & Wachtel, Ruth E. (2014). Strategies for net cost reductions with the expanded role and expertise of anesthesiologists in the perioperative surgical home. *Anesthesia & Analgesia*, *118*(5), 1062-1071.
- Donaldson, Molla S. (2001). Exploring innovation and quality improvement in health care microsystems: A cross-case analysis. In Institute of Medicine (Ed.): National Academies Press.
- Ellison, Lars M, Pinto, Peter A, Kim, Fernando, Ong, Albert M, Patriciu, Alex, Stoianovici, Dan, . . . Kavoussi, Louis R. (2004). Telerounding and patient satisfaction after surgery. *Journal of the American College of Surgeons, 199*(4), 523-530.
- Ergina, P. L., Gold, S. L., & Meakins, J. L. (1993). Perioperative care of the elderly patient. *World J Surg*, *17*(2), 192-198.
- Eskicioglu, C., Forbes, S. S., Aarts, M. A., Okrainec, A., & McLeod, R. S. (2009). Enhanced recovery after surgery (ERAS) programs for patients having colorectal surgery: a meta-analysis of randomized trials. *J Gastrointest Surg*, *13*(12), 2321-2329. doi: 10.1007/s11605-009-0927-2
- Favuzza, Joanne, Brady, Karen, & Delaney, Conor P. (2013). Transversus abdominis plane blocks and enhanced recovery pathways: making the 23-h hospital stay a realistic goal after laparoscopic colorectal surgery. *Surgical endoscopy*, 1-6.
- Fearon, KCH, Ljungqvist, O, Von Meyenfeldt, M, Revhaug, A, Dejong, CHC, Lassen, K, . . . Andersen, Jens. (2005). Enhanced recovery after surgery: a consensus review of clinical care for patients undergoing colonic resection. *Clin Nutr, 24*(3), 466-477.
- Fernández, Allison M, Cronin, Jessica, Greenberg, Robert S, & Heitmiller, Eugenie S. (2014). Pediatric preoperative blood ordering: when is a type and screen or crossmatch really needed? *Pediatric Anesthesia*, *24*(2), 146-150.
- Ferschl, Marla B, Tung, Avery, Sweitzer, BobbieJean, Huo, Dezheng, & Glick, David B. (2005). Preoperative clinic visits reduce operating room cancellations and delays. *Anesthesiology*, 103(4), 855-859.
- Finegan, Barry A, Rashiq, Saifudin, McAlister, Finlay A, & O'Connor, Paul. (2005). Selective ordering of preoperative investigations by anesthesiologists reduces the number and cost of tests. *Canadian journal of anaesthesia*, *52*(6), 575-580.
- Fink, Aaron S, Hutter, Matthew M, Campbell Jr, Darrell C, Henderson, William G, Mosca, Cecilia, &
 Khuri, Shukri F. (2007). Comparison of risk-adjusted 30-day postoperative mortality and
 morbidity in Department of Veterans Affairs hospitals and selected university medical centers:

general surgical operations in women. *Journal of the American College of Surgeons, 204*(6), 1127-1136.

- Finks, J. F., Osborne, N. H., & Birkmeyer, J. D. (2011). Trends in hospital volume and operative mortality for high-risk surgery. *N Engl J Med*, *364*(22), 2128-2137. doi: 10.1056/NEJMsa1010705
- Fischer, John P, Shang, Eric K, Nelson, Jonas A, Wu, Liza C, Serletti, Joseph M, & Kovach, Stephen J. (2014). Patterns of Preoperative Laboratory Testing in Patients Undergoing Outpatient Plastic Surgery Procedures. Aesthetic Surgery Journal, 34(1), 133-141.
- Fischer, Stephen P. (1996). Development and effectiveness of an anesthesia preoperative evaluation clinic in a teaching hospital. *Anesthesiology*, *85*(1), 196-206.
- Fleisher, L. A., Beckman, J. A., Brown, K. A., Calkins, H., Chaikof, E., Fleischmann, K. E., . . . Society for Vascular, Surgery. (2007). ACC/AHA 2007 guidelines on perioperative cardiovascular evaluation and care for noncardiac surgery: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (Writing Committee to Revise the 2002 Guidelines on Perioperative Cardiovascular Evaluation for Noncardiac Surgery). *Circulation*, 116(17), e418-499. doi: 10.1161/CIRCULATIONAHA.107.185699
- Fried, L. P., Ferrucci, L., Darer, J., Williamson, J. D., & Anderson, G. (2004). Untangling the concepts of disability, frailty, and comorbidity: implications for improved targeting and care. J Gerontol A Biol Sci Med Sci, 59(3), 255-263.
- Fried, L. P., Tangen, C. M., Walston, J., Newman, A. B., Hirsch, C., Gottdiener, J., . . . Cardiovascular Health Study Collaborative Research, Group. (2001). Frailty in older adults: evidence for a phenotype. J Gerontol A Biol Sci Med Sci, 56(3), M146-156.
- Fritsch, G, Flamm, M, Hepner, DL, Panisch, S, Seer, J, & Soennichsen, A. (2012). Abnormal pre-operative tests, pathologic findings of medical history, and their predictive value for perioperative complications. *Acta Anaesthesiologica Scandinavica*, *56*(3), 339-350.
- Frost, Elizabeth AM. (2012). Integrating Perioperative Information From Divergent Sources. *Mount Sinai* Journal of Medicine: A Journal of Translational and Personalized Medicine, 79(1), 3-12.
- Furze, Gill, Dumville, Jo C, Miles, Jeremy NV, Irvine, Karen, Thompson, David R, & Lewin, Robert JP.
 (2009). "Prehabilitation" prior to CABG surgery improves physical functioning and depression. International journal of cardiology, 132(1), 51-58.
- Garcia, Aline Pallaoro, Pastorio, Karen Adriana, Nunes, Rodrigo Lopes, Locks, Giovani Figueiredo, & Almeida, Maria Cristina Simoes de. (2014). Indication of preoperative tests according to clinical criteria: need for supervision. *Revista Brasileira de Anestesiologia, 64*(1), 54-61.
- Garonzik-Wang, J. M., Govindan, P., Grinnan, J. W., Liu, M., Ali, H. M., Chakraborty, A., . . . Segev, D. L. (2012). Frailty and delayed graft function in kidney transplant recipients. *Arch Surg*, 147(2), 190-193. doi: 10.1001/archsurg.2011.1229
- Garson, Leslie, Schwarzkopf, Ran, Vakharia, Shermeen, Alexander, Brenton, Stead, Stan, Cannesson, Maxime, & Kain, Zeev. (2014). Implementation of a Total Joint Replacement-Focused Perioperative Surgical Home: A Management Case Report. *Anesthesia & Analgesia, 118*(5), 1081-1089 1010.1213/ANE.00000000000191.
- Gibbs, James, Cull, William, Henderson, William, Daley, Jennifer, Hur, Kwan, & Khuri, Shukri F. (1999). Preoperative serum albumin level as a predictor of operative mortality and morbidity: results from the National VA Surgical Risk Study. *Archives of Surgery*, *134*(1), 36.
- Glick, David B, Tung, Avery, Ferschl, Marla B, & Sweitzer, BobbieJean. (2006). Anesthesia preoperative medicine clinic: beyond surgery cancellations. *Anesthesiology*, *105*(1), 225-226.
- Goldhill, DR, Waldmann, CS, & Soni, N. (2012). 'The future ain't what it used to be'–reflections on the evolution of anaesthesia. *Anaesthesia*, *67*(5), 470-473.
- Graham, Jove, Bowen, Thomas R, Strohecker, Kent A, Irgit, Kaan, & Smith, Wade R. (2014). Reducing mortality in hip fracture patients using a perioperative approach and "Patient-Centered Medical Home" model: a prospective cohort study. *Patient safety in surgery*, 8(1), 7.
- Grocott, MPW, & Pearse, RM. (2012). Perioperative medicine: the future of anaesthesia? *British journal* of anaesthesia, 108(5), 723-726.

- Guo, C. B., Zhang, W., Ma, D. Q., Zhang, K. H., & Huang, J. Q. (1996). Hand grip strength: an indicator of nutritional state and the mix of postoperative complications in patients with oral and maxillofacial cancers. *Br J Oral Maxillofac Surg*, *34*(4), 325-327.
- Gustafsson, UO, Scott, MJ, Schwenk, W, Demartines, N, Roulin, D, Francis, N, . . . Soop, M. (2012). Guidelines for perioperative care in elective colonic surgery: Enhanced Recovery After Surgery (ERAS[®]) Society recommendations. *Clinical Nutrition*.
- Hardt, J, Schwarzbach, M, Hasenberg, T, Post, S, Kienle, P, & Ronellenfitsch, U. (2013). The effect of a clinical pathway for enhanced recovery of rectal resections on perioperative quality of care. *International journal of colorectal disease*, 1-8.
- Hebl, James R, Dilger, John A, Byer, David E, Kopp, Sandra L, Stevens, Susanna R, Pagnano, Mark W, ...
 Horlocker, Terese T. (2008). A pre-emptive multimodal pathway featuring peripheral nerve
 block improves perioperative outcomes after major orthopedic surgery. *Reg Anesth Pain Med*, 33(6), 510-517.
- Henderson, William G, Khuri, Shukri F, Mosca, Cecilia, Fink, Aaron S, Hutter, Matthew M, & Neumayer, Leigh A. (2007). Comparison of risk-adjusted 30-day postoperative mortality and morbidity in Department of Veterans Affairs hospitals and selected university medical centers: general surgical operations in men. *Journal of the American College of Surgeons, 204*(6), 1103-1114.
- Hendren, Samantha, Englesbe, Michael J, Brooks, Linda, Kubus, James, Yin, Huiying, & Campbell, Darrell
 A. (2011). Prophylactic antibiotic practices for colectomy in Michigan. *The American Journal of Surgery, 201*(3), 290-294.
- Hertzberg, Linda B. (2013). Evolution of Value-Added Services. ASA Newsletter: Patient Safety, 77(5), 30-31.
- Hoff, Timothy. (2013). Medical Home Implementation: A Sensemaking Taxonomy of Hard and Soft Best Practices. *Milbank Quarterly*, *91*(4), 771-810.
- Holland, Diane E, Conlon, Patricia M, Rohlik, Gina M, Gillard, Kris L, Tomlinson, Angie L, Raadt, Dawn M,
 ... Rhudy, Lori M. (2014). Developing and testing a discharge planning decision support tool for hospitalized pediatric patients. *Journal for Specialists in Pediatric Nursing*, 19(2), 149-161.
- Holm, Bente, Thorborg, Kristian, Husted, Henrik, Kehlet, Henrik, & Bandholm, Thomas. (2013). Surgery-Induced Changes and Early Recovery of Hip-Muscle Strength, Leg-Press Power, and Functional Performance after Fast-Track Total Hip Arthroplasty: A Prospective Cohort Study. *PloS one*, *8*(4), e62109.
- Holt, Natalie F. (2014). Trends in healthcare and the role of the anesthesiologist in the perioperative surgical home–the US perspective. *Current Opinion in Anesthesiology*, 27(3), 371-376.
- Holt, Natalie F, Silverman, David G, Prasad, Ravindra, Dziura, James, & Ruskin, Keith J. (2007).
 Preanesthesia clinics, information management, and operating room delays: results of a survey of practicing anesthesiologists. *Anesthesia & Analgesia, 104*(3), 615-618.
- Hooper, Vallire D. (2013). Who staffs the perioperative surgical home? *Anesthesia & Analgesia, 116*(4), 754-755.
- Huang, J, & Schweitzer, M. (2013). The perioperative surgical home: what anesthesiologists need to do. *The Journal of medical practice management: MPM, 29*(4), 235-237.
- Huck, Amelia, & Lewandrowski, Kent. (2014). Utilization management in the clinical laboratory: An introduction and overview of the literature. *Clinica Chimica Acta, 427*, 111-117.
- Huddleston, Jeanne M, Long, Kirsten Hall, Naessens, James M, Vanness, David, Larson, Dirk, Trousdale, Robert, . . . Wachter, Robert M. (2004). Medical and Surgical Comanagement after Elective Hip and Knee ArthroplastyA Randomized, Controlled Trial. *Annals of internal medicine*, 141(1), 28-38.
- Huesch, Marco D. (2011). Provider-Hospital "Fit" and Patient Outcomes: Evidence from Massachusetts Cardiac Surgeons, 2002–2004. *Health services research, 46*(1p1), 1-26.
- Huesch, Marco D. (2013). Are there always synergies between productive resources and resource deployment capabilities? *Strategic Management Journal*.

- Hutter, Matthew M, Lancaster, Robert T, Henderson, William G, Khuri, Shukri F, Mosca, Cecilia, Johnson, Robert G, . . . Cambria, Richard P. (2007). Comparison of risk-adjusted 30-day postoperative mortality and morbidity in Department of Veterans Affairs hospitals and selected university medical centers: vascular surgical operations in men. *Journal of the American College* of Surgeons, 204(6), 1115-1126.
- Ilfeld, Brian M, Mariano, Edward R, Girard, Paul J, Loland, Vanessa J, Meyer, R Scott, Donovan, John F, . . . Shuster, Jonathan J. (2010). A multicenter, randomized, triple-masked, placebo-controlled trial of the effect of ambulatory continuous femoral nerve blocks on discharge-readiness following total knee arthroplasty in patients on general orthopaedic wards. *Pain, 150*(3), 477-484.
- Ilfeld, Brian M, Vandenborne, Krista, Duncan, Pamela W, Sessler, Daniel I, Enneking, F Kayser, Shuster, Jonathan J, . . . Wright, Thomas W. (2006). Ambulatory continuous interscalene nerve blocks decrease the time to discharge readiness after total shoulder arthroplasty: a randomized, triple-masked, placebo-controlled study. *Anesthesiology*, 105(5), 999-1007.
- Ilfeld, Brian M, Wright, Thomas W, Enneking, F Kayser, & Morey, Timothy E. (2005). Joint range of motion after total shoulder arthroplasty with and without a continuous interscalene nerve block: a retrospective, case-control study. *Regional anesthesia and pain medicine*, 30(5), 429-433.
- Institute for Healthcare Improvement. (2003). The Breakthrough Series: IHI's Collaborative Model for Achieving Breakthrough Improvement. *IHI Innovation Series white paper*. Retrieved July 24, 2013, from www.IHI.org
- Jackson, Timothy D, Wannares, Jeffrey J, Lancaster, R Todd, Rattner, David W, & Hutter, Matthew M. (2011). Does speed matter? The impact of operative time on outcome in laparoscopic surgery. *Surgical endoscopy*, *25*(7), 2288-2295.
- Jacques, Paul St, France, Daniel J, Pilla, Michael, Lai, Eric, & Higgins, Michael S. (2006). Evaluation of a hands-free wireless communication device in the perioperative environment. *Telemedicine Journal & e-Health*, 12(1), 42-49.
- Joh, Y. G., Lindsetmo, R. O., Stulberg, J., Obias, V., Champagne, B., & Delaney, C. P. (2008). Standardized postoperative pathway: accelerating recovery after ileostomy closure. *Dis Colon Rectum*, *51*(12), 1786-1789. doi: 10.1007/s10350-008-9399-9
- Johnson, Robert G, Wittgen, Catherine M, Hutter, Matthew M, Henderson, William G, Mosca, Cecilia, & Khuri, Shukri F. (2007). Comparison of risk-adjusted 30-day postoperative mortality and morbidity in Department of Veterans Affairs hospitals and selected university medical centers: vascular surgical operations in women. *Journal of the American College of Surgeons, 204*(6), 1137-1146.
- Johnstone, Robert E. (2012a). 2012 59th AUA Annual Meeting in Cleveland.
- Johnstone, Robert E. (2012b). Anesthesia Practice Trends: What is Changing? What Does it Mean?
- Jones, Samantha, Alnaib, Mustafa, Kokkinakis, Michail, Wilkinson, Michael, Gibson, Alan St Clair, & Kader, Deiary. (2011). Pre-operative patient education reduces length of stay after knee joint arthroplasty. *Annals of the Royal College of Surgeons of England*, *93*(1), 71.
- Kahokehr, A., Sammour, T., Zargar-Shoshtari, K., Thompson, L., & Hill, A. G. (2009). Implementation of ERAS and how to overcome the barriers. *Int J Surg*, *7*(1), 16-19. doi: 10.1016/j.ijsu.2008.11.004
- Kain, Zeev N, Vakharia, Shermeen, Garson, Leslie, Engwall, Scott, Schwarzkopf, Ran, Gupta, Ranjan, & Cannesson, Maxime. (2014). The perioperative surgical home as a future perioperative practice model. Anesthesia & Analgesia, 118(5), 1126-1130.
- Kaplan, E. B., Sheiner, L. B., & Boeckmann, A. J. (1985). The usefulness of preoperative laboratory screening. *JAMA*, *253*(24), 3576-3581. doi: 10.1001/jama.1985.03350480084025
- Kariv, Yehuda, Delaney, Conor P, Senagore, Anthony J, Manilich, Elena A, Hammel, Jeffrey P, Church, James M, . . . Fazio, Victor W. (2007). Clinical outcomes and cost analysis of a "fast track" postoperative care pathway for ileal pouch-anal anastomosis. A case control study. *Diseases of the colon & rectum*, *50*(2), 137-146.

- Kastenberg, Zachary J, Rhoads, Kim F, Melcher, Marc L, & Wren, Sherry M. (2012). The Influence of Intern Home Call on Objectively Measured Perioperative Outcomes. *Arch Surg*, 1-5. doi: 10.1001/jamasurg.2013.1063
- Kehlet, & Mogensen. (1999). Hospital stay of 2 days after open sigmoidectomy with a multimodal rehabilitation programme. *British Journal of Surgery, 86*(2).
- Kehlet, H. (1997). Multimodal approach to control postoperative pathophysiology and rehabilitation. British Journal of Anaesthesia, 78(5), 606-617.
- Kehlet, H, & Mythen, M. (2011). Why is the surgical high-risk patient still at risk? *British journal of anaesthesia*, 106(3), 289-291.
- Kehlet, Henrik. (2011). Surgery: Fast-track colonic surgery and the knowing–doing gap. *Nature Reviews Gastroenterology and Hepatology*, *8*(10), 539-540.
- Kehlet, Henrik, & Dahl, Jørgen B. (2003). Anaesthesia, surgery, and challenges in postoperative recovery. *The Lancet*, *362*(9399), 1921-1928.
- Khuri, Shukri. (2005). Determinants of long-term survival after major surgery and the adverse effect of postoperative complications. *Annals of surgery, 242*(3), 326-341;discussion341-323.
- Khuri, Shukri F. (2006). Safety, quality, and the national surgical quality improvement program. *The American surgeon*, *72*(11), 994-998.
- Khuri, Shukri F, Daley, Jennifer, & Henderson, William G. (2002). The comparative assessment and improvement of quality of surgical care in the Department of Veterans Affairs. *Archives of Surgery*, *137*(1), 20.
- Khuri, Shukri F, Daley, Jennifer, Henderson, William, Hur, Kwan, Demakis, John, Aust, J Bradley, . . . Grover, Frederick. (1998). The Department of Veterans Affairs' NSQIP: the first national, validated, outcome-based, risk-adjusted, and peer-controlled program for the measurement and enhancement of the quality of surgical care. National VA Surgical Quality Improvement Program. *Annals of surgery, 228*(4), 491.
- Khuri, Shukri F, Daley, Jennifer, Henderson, William, Hur, Kwan, Gibbs, James O, Barbour, Galen, . . . Grover, Frederick. (1997). Risk adjustment of the postoperative mortality rate for the comparative assessment of the quality of surgical care: results of the National Veterans Affairs Surgical Risk Study. *Journal of the American College of Surgeons*, *185*(4), 315-327.
- Kilo, Charles M, & Wasson, John H. (2010). Practice redesign and the patient-centered medical home: history, promises, and challenges. *Health Affairs, 29*(5), 773-778.
- Kim, Sun-wook, Han, Ho-Seong, Jung, Hee-won, Kim, Kwang-il, Hwang, Dae Wook, Kang, Sung-Bum, & Kim, Cheol-Ho. (2014). Multidimensional Frailty Score for the Prediction of Postoperative Mortality Risk. JAMA surgery.
- Kim, Young Ju, Xiao, Yan, Hu, Peter, & Dutton, Richard. (2009). Staff acceptance of video monitoring for coordination: a video system to support perioperative situation awareness. *Journal of clinical nursing*, 18(16), 2366-2371.
- Klidjian, A. M., Foster, K. J., Kammerling, R. M., Cooper, A., & Karran, S. J. (1980). Relation of anthropometric and dynamometric variables to serious postoperative complications. *Br Med J*, 281(6245), 899-901.
- Knott, Amy, Pathak, Samir, McGrath, John S, Kennedy, Robin, Horgan, Alan, Mythen, Monty, . . .
 Francis, Nader K. (2012). Consensus views on implementation and measurement of enhanced recovery after surgery in England: Delphi study. *BMJ open*, 2(6).
- Knox, M, Myers, E, Wilson, I, & Hurley, M. (2009). The impact of pre-operative assessment clinics on elective surgical case cancellations. *The Surgeon*, *7*(2), 76-78.
- Kohn, Linda T, Corrigan, Janet M, & Donaldson, Molla S. (2000). To err is human: building a safer health system. In Institute of Medicine (Ed.), (Vol. 627): National Academies Press.
- Kolozsvari, N. O., Capretti, G., Kaneva, P., Neville, A., Carli, F., Liberman, S., . . . Feldman, L. S. (2012). Impact of an enhanced recovery program on short-term outcomes after scheduled laparoscopic colon resection. *Surg Endosc*. doi: 10.1007/s00464-012-2446-6

- Krenk, Lene, Kehlet, Henrik, Hansen, Torben Bæk, Solgaard, Søren, Soballe, Kjeld, & Rasmussen, Lars Simon. (2014). Cognitive dysfunction after fast-track hip and knee replacement. Anesthesia & Analgesia, 118(5), 1034-1040.
- Krupka, Dan C, Sandberg, Warren S, & Weeks, William B. (2012). The impact on hospitals of reducing surgical complications suggests many will need shared savings programs with payers. *Health Affairs*, 31(11), 2571-2578.
- Kuntz, Ludwig, & Vera, Antonio. (2005). Transfer pricing in hospitals and efficiency of physicians: the case of anesthesia services. *Health care management review*, *30*(3), 262-269.
- Kuper, Martin, Gold, Stuart J, Callow, Colin, Quraishi, Tanviha, King, Sarah, Mulreany, Aundrea, . . .
 Conway, Daniel H. (2011). Intraoperative fluid management guided by oesophageal Doppler monitoring. *BMJ*, 342.
- Lagasse, Robert S, Steinberg, Ellen S, Katz, Robert I, & Saubermann, Albert J. (1995). Defining quality of perioperative care by statistical process control of adverse outcomes. *Anesthesiology*, *82*(5), 1181-1188.
- Lako, A, Bilali, S, Memishaj, S, Daka, A, Dedej, T, Nurka, T, . . . Gjylameti, V. (2013). The impact of blood use on patients undergoing coronary artery bypass surgery: a prospective study. *Il Giornale di chirurgia*, *35*(1-2), 20-26.
- Landry, Michel D, Jaglal, Susan, Wodchis, Walter, Cott, Cheryl A, Gordon, Melanie, Tong, Samantha, & Nicole Cooper, PT. (2006). Forecasting the Demand for Rehabilitation Services Across Ontario's Continuum of Care~ Final Report~.
- Lassen, K., Soop, M., Nygren, J., Cox, P. B., Hendry, P. O., Spies, C., . . . Enhanced Recovery After Surgery, Group. (2009). Consensus review of optimal perioperative care in colorectal surgery: Enhanced Recovery After Surgery (ERAS) Group recommendations. *Arch Surg*, 144(10), 961-969. doi: 10.1001/archsurg.2009.170
- Lassen, Kristoffer, Coolsen, Marielle ME, Slim, Karem, Carli, Francesco, de Aguilar-Nascimento, José E, Schäfer, Markus, . . . Demartines, Nicolas. (2012). Guidelines for perioperative care for pancreaticoduodenectomy: Enhanced Recovery After Surgery (ERAS[®]) Society recommendations. *Clinical Nutrition*.
- Leandro-Merhi, V. A., de Aquino, J. L., & Sales Chagas, J. F. (2011). Nutrition status and risk factors associated with length of hospital stay for surgical patients. *JPEN J Parenter Enteral Nutr, 35*(2), 241-248. doi: 10.1177/0148607110374477
- Lee, Anna, Kerridge, Ross K, Chui, Po Tong, Chiu, Chun Hung, & Gin, Tony. (2011). Perioperative systems as a quality model of perioperative medicine and surgical care. *Health Policy*, 102(2), 214-222.
- Lee, R., Li, S., Rankin, J. S., O'Brien, S. M., Gammie, J. S., Peterson, E. D., . . . Society of Thoracic Surgeons Adult Cardiac Surgical, Database. (2011). Fifteen-year outcome trends for valve surgery in North America. *Ann Thorac Surg*, *91*(3), 677-684; discussion p 684. doi: 10.1016/j.athoracsur.2010.11.009
- Leichtle, Stefan W, Mouawad, Nicolas J, Welch, Kathleen B, Lampman, Richard M, & Cleary, Robert K. (2012). Risk factors for anastomotic leakage after colectomy. *Diseases of the Colon & Rectum*, *55*(5), 569.
- Lemmens, L, Van Zelm, R, van Hillegersberg, R, & Kerkkamp, H. (2009). Clinical and organizational content of clinical pathways for digestive surgery: a systematic review. *Digestive surgery, 26*(2), 91-99.
- Levick, Donald L, Stern, Glenn, Meyerhoefer, Chad D, Levick, Aaron, & Pucklavage, David. (2013). Reducing unnecessary testing in a CPOE system through implementation of a targeted CDS intervention. *BMC medical informatics and decision making*, *13*(1), 43.
- Lloyd, G. M., Kirby, R., Hemingway, D. M., Keane, F. B., Miller, A. S., & Neary, P. (2010). The RAPID protocol enhances patient recovery after both laparoscopic and open colorectal resections. *Surg Endosc*, *24*(6), 1434-1439. doi: 10.1007/s00464-009-0795-6

- Macario, Alex, Vitez, Terry S, Dunn, Brian, & McDonald, Tom. (1995). Where are the costs in perioperative care?: Analysis of hospital costs and charges for inpatient surgical care. *Anesthesiology*, *83*(6), 1138-1144.
- Mackey, David. (2012). Can We Finally Conquer the Problem of Medical Quality? *Anesthesiology*, *117*(2), 225.
- Maessen, J., Dejong, C. H., Hausel, J., Nygren, J., Lassen, K., Andersen, J., . . . von Meyenfeldt, M. F.
 (2007). A protocol is not enough to implement an enhanced recovery programme for colorectal resection. *Br J Surg*, *94*(2), 224-231. doi: 10.1002/bjs.5468
- Mantha, Srinivas, Roizen, Michael F, Madduri, Jyostna, Rajender, Yemala, Shanti Naidu, Kamatham, & Gayatri, K. (2005). Usefulness of routine preoperative testing: a prospective single-observer study. *Journal of Clinical Anesthesia*, *17*(1), 51-57.
- Mayo, Nancy E, Feldman, Liane, Scott, Susan, Zavorsky, Gerald, Kim, Do Jun, Charlebois, Patrick, . . . Carli, Francesco. (2011). Impact of preoperative change in physical function on postoperative recovery: argument supporting prehabilitation for colorectal surgery. *Surgery*, *150*(3), 505-514.
- McMillan, Sara S, Kendall, Elizabeth, Sav, Adem, King, Michelle A, Whitty, Jennifer A, Kelly, Fiona, & Wheeler, Amanda J. (2013). Patient-Centered Approaches to Health Care: A Systematic Review of Randomized Controlled Trials. *Medical Care Research and Review*.
- Mcmurray, Anne, Johnson, Patricia, Wallis, Marianne, Patterson, Elizabeth, & Griffiths, Susan. (2007). General surgical patients' perspectives of the adequacy and appropriateness of discharge planning to facilitate health decision-making at home. *Journal of clinical nursing*, *16*(9), 1602-1609.
- Melnyk, Megan, Casey, Rowan G, Black, Peter, & Koupparis, Anthony J. (2011). Enhanced recovery after surgery (ERAS) protocols: Time to change practice? *Canadian Urological Association Journal,* 5(5), 342.
- Merli, G. (2005). Perioperative medicine: a fundamental facet of our identity. *From perioperative care a special supplement to the official publication of the Society of Hospital Medicine, 4*.
- Miguel, Romeo MC, & Sagardoy, Muniesa L. (2014). Effects of using an information leaflet in reducing perioperative anxiety and pain in patients undergoing urological surgery. *Enfermeria clinica*.
- Miller, Timothy E, Thacker, Julie K, White, William D, Mantyh, Christopher, Migaly, John, Jin, Juying, . . . Anstrom, Kevin J. (2014). Reduced length of hospital stay in colorectal surgery after implementation of an enhanced recovery protocol. *Anesthesia & Analgesia, 118*(5), 1052-1061.
- Mohn, A. C., Bernardshaw, S. V., Ristesund, S. M., Hovde Hansen, P. E., & Rokke, O. (2009). Enhanced recovery after colorectal surgery. Results from a prospective observational two-centre study. *Scand J Surg*, *98*(3), 155-159.
- Murphy, M. C., Brooks, C. N., New, S. A., & Lumbers, M. L. (2000). The use of the Mini-Nutritional Assessment (MNA) tool in elderly orthopaedic patients. *Eur J Clin Nutr, 54*(7), 555-562.
- Mythen, M. (2011). Fit for surgery? *Anesth Analg, 112*(5), 1002-1004. doi: 10.1213/ANE.0b013e318203250f
- Mythen, M., Swart, Michael, Acheson, Nigel, Crawford, Robin, Jones, Kerri, Kuper, Martin, . . . Horgan, Alan. (2012). Perioperative fluid management: Consensus statement from the enhanced recovery partnership. *Perioperative Medicine*, 1(1), 2.
- Nanavati, Aditya J, & Prabhakar, S. (2013). A Comparative Study of 'Fast-Track' Versus Traditional Peri-Operative Care Protocols in Gastrointestinal Surgeries. *Journal of Gastrointestinal Surgery*, 1-11.
- Nascimbeni, R., Di Fabio, F., Di Betta, E., & Salerni, B. (2009). The changing impact of age on colorectal cancer surgery. A trend analysis. *Colorectal Dis, 11*(1), 13-18. doi: 10.1111/j.1463-1318.2008.01491.x
- Nelson, Eugene C., Fisher, Elliot S., & Weinstein, James N. (2011). A Perspective on Patient-Centric, Feed-Forward "Collaboratories". In Institute of Medicine (Ed.), *Engineering a Learning Healthcare System: A Look at the Future* (pp. 149-169): The National Academies Press.

- Nepomnayshy, Dmitry, Hesham, Walid, Erickson, Brandon, MacDonald, Julie, Iorio, Richard, & Brams, David. (2013). Sleep Apnea: Is Routine Preoperative Screening Necessary? *Obesity surgery*, 1-5.
- Newman, A. B., Simonsick, E. M., Naydeck, B. L., Boudreau, R. M., Kritchevsky, S. B., Nevitt, M. C., . . . Harris, T. B. (2006). Association of long-distance corridor walk performance with mortality, cardiovascular disease, mobility limitation, and disability. *JAMA*, 295(17), 2018-2026. doi: 10.1001/jama.295.17.2018
- Newman, Mark F, Mathew, Joseph P, & Aronson, Solomon. (2013). The Evolution of Anesthesiology and Perioperative Medicine. *Anesthesiology*, *118*(5), 1005-1007.
- Newswise.com. (2013, October 8, 2012). Cost Savings, Successful Outcomes, Found in New Anesthesiologist Model of Care. Retrieved August 20, 2013, from <u>www.newswise.com/articles/cost-savings-successful-outcomes-found-in-new-anesthesiologist-</u> model-of-care
- Nielsen, Per Rotbøll, Jørgensen, Lars Damkjær, Dahl, Benny, Pedersen, Tom, & Tønnesen, Hanne. (2010). Prehabilitation and early rehabilitation after spinal surgery: randomized clinical trial. *Clinical Rehabilitation, 24*(2), 137-148.
- Nuelle, Douglas G, & Mann, Kathy. (2007). Minimal incision protocols for anesthesia, pain management, and physical therapy with standard incisions in hip and knee arthroplasties: the effect on early outcomes. *The Journal of arthroplasty, 22*(1), 20-25.
- O'Brien, Lisa, McKeough, Carly, & Abbasi, Randa. (2013). Pre-surgery education for elective cardiac surgery patients: A survey from the patient's perspective. *Australian occupational therapy journal, 60*(6), 404-409.
- O'Doherty, AF, West, M, Jack, S, & Grocott, MPW. (2013). Preoperative aerobic exercise training in elective intra-cavity surgery: a systematic review. *British journal of anaesthesia*, *110*(5), 679-689.
- Oates, Julian, Weston, W Wayne, & Jordan, John. (2000). The impact of patient-centered care on outcomes. *Fam Pract, 49*, 796-804.
- Office of Inspector General. (2013). OIG Advisory Opinion 12-22. Washington, DC: Department of Health and Human Services Retrieved from http://oig.hhs.gov/fraud/docs/advisoryopinions/2012/AdvOpn12-22.pdf
- Onuoha, Onyi C. (2013). Five Things Physicians and Patients Should Question *Choosing Wisely*: American Society of Anesthesiologists.
- Paloski, Dan. (2013, July 3, 2013). Perioperative Surgical Home Model. *Physician Leadership Forum*. Retrieved July 24, 2013, from http://ahaphysicianforum.wordpress.com/
- Parker, Brian M., Tetzlaff, John E., Litaker, David L., & Maurer, Walter G. (2000). Redefining the preoperative evaluation process and the role of the anesthesiologist. *Journal of Clinical Anesthesia*, *12*(5), 350-356. doi: <u>http://dx.doi.org/10.1016/S0952-8180(00)00169-0</u>
- Pasquali, Sara K, Ohye, Richard G, Lu, Minmin, Kaltman, Jonathan, Caldarone, Christopher A, Pizarro, Christian, . . . Investigators, Pediatric Heart Network. (2012). Variation in perioperative care across centers for infants undergoing the Norwood procedure. *J Thorac Cardiovasc Surg*, 144(4), 915-921. doi: 10.1016/j.jtcvs.2012.05.021
- Pasternak, Lewis Reuven. (2009). Preoperative testing: moving from individual testing to risk management. *Anesthesia & Analgesia*, 108(2), 393-394.
- Pattakos, Gregory, Johnston, Douglas R, Houghtaling, Penny L, Nowicki, Edward R, & Blackstone, Eugene H. (2012). Preoperative Prediction of Non-Home Discharge: A Strategy to Reduce Resource Use after Cardiac Surgery. *Journal of the American College of Surgeons, 214*(2), 140-147.
- Pawa, N., Cathcart, P. L., Arulampalam, T. H., Tutton, M. G., & Motson, R. W. (2012). Enhanced recovery program following colorectal resection in the elderly patient. *World J Surg*, 36(2), 415-423. doi: 10.1007/s00268-011-1328-8

- Peterson, Mary Dale. (2011). Administrative Update: Anesthesiologist, Intensivist and Now CEO: Anesthesiologists Are Versatile and Perfect to Lead the Surgical Home. *ASA Newsletter: Administrative Update, 75*, 11.
- Pollard, John B., & Garnerin, Philippe. (1999). Outpatient preoperative evaluation clinic can lead to a rapid shift from inpatient to outpatient surgery: a retrospective review of perioperative setting and outcome. *Journal of Clinical Anesthesia*, *11*(1), 39-45. doi: http://dx.doi.org/10.1016/S0952-8180(98)00126-3
- Porter, Michael E, & Teisberg, Elizabeth Olmsted. (2006). *Redefining health care: creating value-based competition on results*: Harvard Business Press.
- Pourat, Nadereh, Lavarreda, Shana Alex, & Snyder, Sophie. (2013). Patient-Centered Medical Homes Improve Care for Adults With Chronic Conditions: UCLA Center for Health Policy Research.
- Prager, MD, Moscucci, Mauro, Birkmeyer, John D, & Arbor, Ann. (2005). Partnering with payers to improve surgical quality: the Michigan plan. *Surgery*, *138*, 815-820.
- Procop, Gary W, Yerian, Lisa M, Wyllie, Robert, Harrison, A Marc, & Kottke-Marchant, Kandice. (2014). Duplicate laboratory test reduction using a clinical decision support tool. *American journal of clinical pathology*, *141*(5).
- Putwatana, P., Reodecha, P., Sirapo-ngam, Y., Lertsithichai, P., & Sumboonnanonda, K. (2005). Nutrition screening tools and the prediction of postoperative infectious and wound complications: comparison of methods in presence of risk adjustment. *Nutrition, 21*(6), 691-697. doi: 10.1016/j.nut.2004.10.015
- Qaseem, A., Snow, V., Fitterman, N., Hornbake, E. R., Lawrence, V. A., Smetana, G. W., . . . Clinical Efficacy Assessment Subcommittee of the American College of, Physicians. (2006). Risk assessment for and strategies to reduce perioperative pulmonary complications for patients undergoing noncardiothoracic surgery: a guideline from the American College of Physicians. *Ann Intern Med*, 144(8), 575-580.
- Raes, M, & Poelaert, J. (2014). Importance of preoperative anaesthetic consultation in perioperative medicine. *Acta clinica Belgica*.
- Ramirez, J. M., Blasco, J. A., Roig, J. V., Maeso-Martinez, S., Casal, J. E., Esteban, F., . . . Spanish working group on fast track, surgery. (2011). Enhanced recovery in colorectal surgery: a multicentre study. *BMC Surg*, *11*, 9. doi: 10.1186/1471-2482-11-9
- Raphael, M., Jaeger, M., & van Vlymen, J. (2011). Easily adoptable total joint arthroplasty program allows discharge home in two days. *Can J Anaesth*, *58*(10), 902-910. doi: 10.1007/s12630-011-9565-8
- Reed, Wallace A, & Ford, John L. (1976). Development of an independent outpatient surgical center. International anesthesiology clinics, 14(2), 113-130.
- Ren, L., Zhu, D., Wei, Y., Pan, X., Liang, L., Xu, J., . . . Wu, Z. (2012). Enhanced Recovery After Surgery (ERAS) program attenuates stress and accelerates recovery in patients after radical resection for colorectal cancer: a prospective randomized controlled trial. *World J Surg*, 36(2), 407-414. doi: 10.1007/s00268-011-1348-4
- Rinehart, Thomas W, Merkel, Matthias J, Schulman, Peter M, & Hutchens, Michael P. (2012). Therapeutic Hypothermia after Perioperative Cardiac Arrest in Cardiac Surgical Patients. *ICU Dir*, *3*(6), 271-278. doi: 10.1177/1944451612461526
- Robert Graham Center. (2007). The Patient Centered Medical Home: History, seven core features, evidence and transformational change. *Washington, DC*.
- Robinson, T. N., Wu, D. S., Stiegmann, G. V., & Moss, M. (2011). Frailty predicts increased hospital and six-month healthcare cost following colorectal surgery in older adults. *Am J Surg*, 202(5), 511-514. doi: 10.1016/j.amjsurg.2011.06.017
- Rockall, TA, & Demartines, N. (2013). Laparoscopy in the era of enhanced recovery. *Best Practice & Research Clinical Gastroenterology*.
- Rotondi, Armando J, Brindis, Charles, Cantees, Kimberly K, DeRiso, Barbara M, Ilkin, Hakan M, Palmer, Jeffrey S, . . . David Watkins, W. (1997). Benchmarking the perioperative process. I. Patient

routing systems: a method for continual improvement of patient flow and resource utilization. *Journal of Clinical Anesthesia*, 9(2), 159-169.

- Roulin, D, Donadini, A, Gander, S, Griesser, A-C, Blanc, C, Hübner, M, . . . Demartines, N. (2013). Costeffectiveness of the implementation of an enhanced recovery protocol for colorectal surgery. *British Journal of Surgery, 100*(8), 1108-1114.
- Rowell, Katherine S, Turrentine, Florence E, Hutter, Matthew M, Khuri, Shukri F, & Henderson, William G. (2007). Use of national surgical quality improvement program data as a catalyst for quality improvement. *Journal of the American College of Surgeons, 204*(6), 1293-1300.
- Ryan, Richard, Davoren, Judith, Grant, Helen, & Delbridge, Leigh. (2004). A 23-hour care centre model for the management of surgical patients. *ANZ Journal of Surgery*, *74*(9), 754-759. doi: 10.1111/j.1445-1433.2004.03140.x
- Sammour, T., Zargar-Shoshtari, K., Bhat, A., Kahokehr, A., & Hill, A. G. (2010). A programme of Enhanced Recovery After Surgery (ERAS) is a cost-effective intervention in elective colonic surgery. *N Z Med J*, *123*(1319), 61-70.
- Sandberg, Warren S, Daily, Bethany, Egan, Marie, Stahl, James E, Goldman, Julian M, Wiklund, Richard A, & Rattner, David. (2005). Deliberate perioperative systems design improves operating room throughput. *Anesthesiology*, *103*(2), 406-418.
- Schaefer, Ann L, Anderson, Jane E, & Simms, Lillian M. (1990). Are they ready? Discharge planning for older surgical patients. *Journal of Gerontological Nursing*.
- Sear, John W. (2014). Perioperative Renin-Angiotensin blockade: to continue or discontinue, that is the question! *Anesthesia & Analgesia, 118*(5), 909-911.
- Segev, Danny, Levi, Retsef, Dunn, Peter F, & Sandberg, Warren S. (2012). Modeling the impact of changing patient transportation systems on peri-operative process performance in a large hospital: insights from a computer simulation study. *Health care management science*, *15*(2), 155-169.
- Seim, Andreas R, & Sandberg, Warren S. (2010). Shaping the operating room and perioperative systems of the future: innovating for improved competitiveness. *Current Opinion in Anesthesiology*, 23(6), 765-771.
- Shafer, Steven L., & Donovan, John F. (2014). Anesthesia & Analgesia's Collection on the Perioperative Surgical Home. *Anesthesia & Analgesia, 118*(5), 893-895 810.1213/ANE.0000000000213.
- Sharareh, Behnam, Le, Natasha B, Hoang, Melinda T, & Schwarzkopf, Ran. (2014). Factors Determining Discharge Destination for Patients Undergoing Total Joint Arthroplasty. *The Journal of arthroplasty*.
- Share, David A, Campbell, Darrell A, Birkmeyer, Nancy, Prager, Richard L, Gurm, Hitinder S, Moscucci, Mauro, . . . Birkmeyer, John D. (2011). How a regional collaborative of hospitals and physicians in Michigan cut costs and improved the quality of care. *Health Affairs*, *30*(4), 636-645.
- Shyu, Yea-Ing L, Liang, Jersey, Tseng, Ming-Yueh, Li, Hsiao-Juan, Wu, Chi-Chuan, Cheng, Huey-Shinn, . . . Yang, Ching-Tzu. (2012). Comprehensive and subacute care interventions improve healthrelated quality of life for older patients after surgery for hip fracture: A randomised controlled trial. *International journal of nursing studies*.
- Siddel, K. (2013). How should we charge for preadmission testing? OR manager, 29(2), 23-24.
- Sigmundsson, Freyr Gauti, Jönsson, Bo, & Strömqvist, Björn. (2014). Preoperative Pain Pattern Predicts Surgical Outcome More Than Type of Surgery in Patients With Central Spinal Stenosis Without Concomitant Spondylolisthesis: A Register Study of 9051 Patients. *Spine, 39*(3), E199-E210.
- Siriussawakul, Arunotai, Nimmannit, Akarin, Rattana-arpa, Sirirat, Chatrattanakulchai, Siritda, Saengtawan, Puttachard, & Wangdee, Aungsumat. (2013). Evaluating Compliance with Institutional Preoperative Testing Guidelines for Minimal-Risk Patients Undergoing Elective Surgery. *BioMed research international, 2013*.

Smith, Ian, McWhinnie, Douglas, & Jackson, Ian. (2011). *Day Case Surgery*: Oxford University Press. Society, ERAS. (2013). History of the ERAS Society. Retrieved July 26, 2013

- Sousa Soares, Danielle de, Marques Brandão, Roberta Ribeiro, Nogueira Mourão, Mirla Rossana,
 Fernandes de Azevedo, Vera Lucia, Vieira Figueiredo, Alexandre, & Santana Trindade, Eliomar.
 (2013). Relevance of routine testing in low-risk patients undergoing minor and medium surgical procedures. *Brazilian Journal of Anesthesiology*, 63(2), 197-201.
- Stenholm, S., Harris, T. B., Rantanen, T., Visser, M., Kritchevsky, S. B., & Ferrucci, L. (2008). Sarcopenic obesity: definition, cause and consequences. *Curr Opin Clin Nutr Metab Care*, 11(6), 693-700. doi: 10.1097/MCO.0b013e328312c37d
- Swank, Ann M, Kachelman, Joseph B, Bibeau, Wendy, Quesada, Peter M, Nyland, John, Malkani, Arthur, & Topp, Robert V. (2011). Prehabilitation before total knee arthroplasty increases strength and function in older adults with severe osteoarthritis. *The Journal of Strength & Conditioning Research*, 25(2), 318-325.
- Szokol, Joseph W, & Stead, Stanley. (2014). The changing anesthesia economic landscape: emergence of large multispecialty practices and Accountable Care Organizations. *Current Opinion in Anesthesiology*, 27(2), 183-189.
- Taicher, Brad M, Alam, Rammy I, Berman, Joshua, & Epstein, Richard H. (2011). Design, implementation, and evaluation of a computerized system to communicate with patients with limited native language proficiency in the perioperative period. *Anesthesia & Analgesia*, 112(1), 106-112.
- Tait, Alan R., Voepel-Lewis, Terri, Munro, Hamish M., Gutstein, Howard B., & Reynolds, Paul I. (1997). Cancellation of pediatric outpatient surgery: Economic and emotional implications for patients and their families. *Journal of Clinical Anesthesia*, 9(3), 213-219. doi: http://dx.doi.org/10.1016/S0952-8180(97)00032-9
- Teeuwen, P. H., Bleichrodt, R. P., Strik, C., Groenewoud, J. J., Brinkert, W., van Laarhoven, C. J., . . . Bremers, A. J. (2010). Enhanced recovery after surgery (ERAS) versus conventional postoperative care in colorectal surgery. *J Gastrointest Surg*, 14(1), 88-95. doi: 10.1007/s11605-009-1037-x
- The Association of Anaesthetists of Great Britain and Ireland, London. (2010). AAGBI Safety Guidelines: Pre-Operative Assessment and Patient Preparation. The Role of the Anaesthetist: Oxford University Press.
- Theobald, Karen, & McMurray, Anne. (2004). Coronary artery bypass graft surgery: discharge planning for successful recovery. *Journal of advanced nursing*, *47*(5), 483-491.
- Thilen, S, Treggiari, M, & Weaver, E. (2012). An Opportunity for Anesthesiologists to Add Value by Controlling Preoperative Resources. Paper presented at the ASA Practice Management Meeting, Orlando, FL.
- Thilen, Stephan R, Bryson, Christopher L, Reid, Robert J, Wijeysundera, Duminda N, Weaver, Edward M, & Treggiari, Miriam M. (2013). Patterns of Preoperative Consultation and Surgical Specialty in an Integrated Healthcare System. *Anesthesiology*, *118*(5), 1028-1037.
- Topp, Robert, Swank, Ann M, Quesada, Peter M, Nyland, John, & Malkani, Arthur. (2009). The effect of prehabilitation exercise on strength and functioning after total knee arthroplasty. *PM&R*, 1(8), 729-735.
- Toscan, Justine, Manderson, Brooke, Santi, Selena M, & Stolee, Paul. (2013). "Just another fish in the pond": the transitional care experience of a hip fracture patient. *International journal of integrated care, 13*, e023-e023.
- Trentman, Terrence L, Mueller, Jeff T, Gray, Richard J, Pockaj, Barbara A, & Simula, Daniel V. (2010). Outpatient surgery performed in an ambulatory surgery center versus a hospital: comparison of perioperative time intervals. *The American Journal of Surgery, 200*(1), 64-67.
- UAB Medicine Website. (2013). UAB Medicine: Perioperative Services. Retrieved August 24, 2013, from http://www.uabmedicine.org/uab-nursing/nursing-perioperative-services
- UC Irvine. (2013, July 8, 2013). Perioperative Surgical Home Model. *Forum Focus*. Retrieved August 20, 2013

- UC Irvine Website. (2013, August 24, 2013). UC Irvine: The Center for Perioperative Care. from <u>http://www.anesthesiology.uci.edu/patient_preop.shtml</u>
- Urbach, David R, & Baxter, Nancy N. (2005). Reducing variation in surgical care: Requires innovative methods for getting evidence into surgical practice. *BMJ: British Medical Journal, 330*(7505), 1401.
- Vakharia, Shermeen B, Mentor, MDMBA, Kain, Zeev, & MBA, MD. (2013). Urology Surgical Home A Transformative Model of Perioperative Care: UC Irvine.
- Varadhan, Krishna K, Neal, Keith R, Dejong, Cornelius HC, Fearon, Kenneth CH, Ljungqvist, Olle, & Lobo, Dileep N. (2010). The enhanced recovery after surgery (ERAS) pathway for patients undergoing major elective open colorectal surgery: a meta-analysis of randomized controlled trials. *Clinical nutrition*, 29(4), 434-440.
- Varadhan, Krishna K., Lobo, Dileep N., & Ljungqvist, Olle. (2010). Enhanced Recovery After Surgery: The Future of Improving Surgical Care. *Critical Care Clinics, 26*(3), 527-547. doi: <u>http://dx.doi.org/10.1016/j.ccc.2010.04.003</u>
- Vashdi, Dana R, Bamberger, Peter A, & Erez, Miriam. (2013). Can Surgical Teams Ever Learn? The Role of Coordination, Complexity, and Transitivity in Action Team Learning. *Academy of Management Journal*, *56*(4), 945-971.
- Vazirani, Sondra, Lankarani-Fard, Azadeh, Liang, Li-Jung, Stelzner, Matthias, & Asch, Steven M. (2012). Perioperative processes and outcomes after implementation of a hospitalist-run preoperative clinic. *Journal of Hospital Medicine*, 7(9), 697-701.
- Veronovici, Nicole R, Lasiuk, Geraldine C, Rempel, Gwendolyn R, & Norris, Colleen M. (2013). Discharge education to promote self-management following cardiovascular surgery: An integrative review. *European Journal of Cardiovascular Nursing*, 1474515113504863.
- Vetter, Thomas R. (2013). Tighten Your Belts! Reduce Your Transfusion Costs with Pre-Operative Management of Anemic Patients. *Review Course Lectures, 3*(18), 52.
- Vetter, Thomas R, Ali, Nabil MK, & Boudreaux, Arthur M. (2012). A Case-Control Study of an Intraoperative Corneal Abrasion Prevention Program: Holding the Gains Made with a Continuous Quality Improvement Effort. *The Joint Commission Journal on Quality and Patient Safety, 38*(11), 490-496.
- Vetter, Thomas R, Boudreaux, Arthur M, Jones, Keith A, Hunter Jr, James M, & Pittet, Jean-Francois.
 (2014). The perioperative surgical home: how anesthesiology can collaboratively achieve and leverage the triple aim in health care. *Anesthesia & Analgesia, 118*(5), 1131-1136.
- Vetter, Thomas R, Boudreaux, Arthur M, Papapietro, Silvio E, Smith, Perry W, Taylor, Benjamin B, & Porterfield Jr, John R. (2012). The perioperative management of patients with coronary artery stents: surveying the clinical stakeholders and arriving at a consensus regarding optimal care. *The American Journal of Surgery, 204*(4), 453-461. e452.
- Vetter, Thomas R, Downing, Michelle E, Vanlandingham, Sean C, Noles, Kristen M, & Boudreaux, Arthur M. (2014). Predictors of Patient Medication Compliance on the Day of Surgery and the Effects of Providing Patients with Standardized yet Simplified Medication Instructions. *Anesthesiology*.
- Vetter, Thomas R, Goeddel, Lee A, Boudreaux, Arthur M, Hunt, Thomas R, Jones, Keith A, & Pittet, Jean-Francois. (2013). The Perioperative Surgical Home: how can it make the case so everyone wins? *BMC Anesthesiology*, 13(1), 6.
- Vetter, Thomas R, Ivankova, Nataliya V, & Goeddel, Lee A. (2013). An Analysis of Methodologies That Can Be Used to Validate if a Perioperative Surgical Home Improves the Patient-centeredness, Evidence-based Practice, Quality, Safety, and Value of Patient Care. *decision-making*, *8*, 17.
- Vischer, U. M., Frangos, E., Graf, C., Gold, G., Weiss, L., Herrmann, F. R., & Zekry, D. (2012). The prognostic significance of malnutrition as assessed by the Mini Nutritional Assessment (MNA) in older hospitalized patients with a heavy disease burden. *Clin Nutr, 31*(1), 113-117. doi: 10.1016/j.clnu.2011.09.010
- Walters, Dustin M, Nagji, Alykhan S, Stukenborg, George J, Peluso, Melissa R, Taylor, Matthew D, Kozower, Benjamin D, . . . Jones, David R. (2014). Predictors of hospital discharge to an

extended care facility after major general thoracic surgery. *The American surgeon, 80*(3), 284-289.

Warner, Mark. (2011). *The Perioperative or Surgical Home: An emerging draft proposal for pilot innovation demonstration projects*. Draft. Retrieved from <u>http://www.asahq.org/For-</u> <u>Members/Advocacy/Legislative-</u>

<u>Conference/~/media/For%20Members/Advocacy/Legislative%20Conference/2011%20-%20One-pager%20Perioperative%20Surgical%20Home%20Pilot%20Project.ashx</u>

Warner, Mark. (2012). The Surgical Home. ASA Newsletter: Academic Anesthesia, 76(5), 30-33.

Watters, J. M. (2002). Surgery in the elderly. Can J Surg, 45(2), 104-108.

- Webb, A. R., Newman, L. A., Taylor, M., & Keogh, J. B. (1989). Hand grip dynamometry as a predictor of postoperative complications reappraisal using age standardized grip strengths. *JPEN J Parenter Enteral Nutr*, 13(1), 30-33.
- Wennström, Berith, Stomberg, Margareta Warrén, Modin, Marina, & Skullman, Stefan. (2010). Patient symptoms after colonic surgery in the era of enhanced recovery–a long-term follow-up. *Journal of clinical nursing*, 19(5-6), 666-672.
- White, Paul F, White, Lisa M, Monk, Terri, Jakobsson, Jan, Raeder, Johan, Mulroy, Michael F, . . . Pittoni, Giovanni. (2012). Perioperative care for the older outpatient undergoing ambulatory surgery. *Anesthesia & Analgesia*, 114(6), 1190-1215.
- Wijeysundera, D. N., Austin, P. C., Beattie, W., Hux, J. E., & Laupacis, A. (2009). A population-based study of anesthesia consultation before major noncardiac surgery. *Archives of Internal Medicine*, 169(6), 595-602. doi: 10.1001/archinternmed.2009.3
- Wijeysundera, Duminda N, Austin, Peter C, Beattie, W Scott, Hux, Janet E, & Laupacis, Andreas. (2012).
 Variation in the practice of preoperative medical consultation for major elective noncardiac surgery: A population-based study. *Anesthesiology*, *116*(1), 25-34.
- Wiklund, R. A., & Rosenbaum, S. H. (1997a). Anesthesiology. First of two parts. *The New England Journal Of Medicine*, 337(16), 1132-1141.
- Wiklund, R. A., & Rosenbaum, S. H. (1997b). Anesthesiology. Second of two parts. *The New England Journal Of Medicine*, 337(17), 1215-1219.
- Williams, Brian A, DeRiso, Barbara M, Engel, Lori B, Figallo, Chiara M, Anders, Joel W, Sproul, Kari A, ... Nagarajan, Nandu J. (1998). Benchmarking the perioperative process: II. Introducing anesthesia clinical pathways to improve processes and outcomes and to reduce nursing labor intensity in ambulatory orthopedic surgery. *Journal of Clinical Anesthesia*, 10(7), 561-569.
- Williams, Brian A, DeRiso, Barbara M, Figallo, Chiara M, Anders, Joel W, Engel, Lori B, Sproul, Kari A, ...
 Nagarajan, Nandu J. (1998). Benchmarking the perioperative process: III. Effects of regional anesthesia clinical pathway techniques on process efficiency and recovery profiles in ambulatory orthopedic surgery. *Journal of Clinical Anesthesia*, 10(7), 570-578.
- Wind, J, Polle, SW, Fung Kon Jin, PHP, Dejong, CHC, Von Meyenfeldt, MF, Ubbink, DT, ... Bemelman, WA. (2006). Systematic review of enhanced recovery programmes in colonic surgery. *British journal of surgery*, *93*(7), 800-809.
- Wong, Jean, Lam, DavidPaul, Abrishami, Amir, Chan, MatthewT V., & Chung, Frances. (2012). Shortterm preoperative smoking cessation and postoperative complications: a systematic review and meta-analysis. *Canadian Journal of Anesthesia/Journal canadien d'anesthésie, 59*(3), 268-279. doi: 10.1007/s12630-011-9652-x
- Young, Jane M, Butow, Phyllis N, Walsh, Jennifer, Durcinoska, Ivana, Dobbins, Timothy A, Rodwell, Laura, . . . Hodge, Bruce. (2013). Multicenter Randomized Trial of Centralized Nurse-Led
 Telephone-Based Care Coordination to Improve Outcomes After Surgical Resection for
 Colorectal Cancer: The CONNECT Intervention. *Journal of Clinical Oncology*, *31*(28), 3585-3591.
- Young, JM, Masya, LM, Solomon, MJ, & Shepherd, HL. (2014). Identifying indicators of colorectal cancer care coordination: a Delphi study. *Colorectal Disease, 16*(1), 17-25.

Appendix A: Literature Charting for Topic 1 - The Surgical Home Concept

**LEGEND: SURGICAL SPECIALTIES								
Abbreviation	Full name							
AS	Abdominal surgery							
CS	Cosmetic surgery							
CRS	Colorectal surgery							
GS	General surgery							
PDS	Pediatric surgery							
TRS	Trauma surgery							
VS	Vascular surgery							
TS	Thoracic surgery							
TTS	Transplant surgery							

				TO	PIC 1: THE SUR	GICAL HOME CONCEPT	
Source	Setting	Scale of Study	Surgical Specialties Covered**	Patient Population Segments	Elements of PSH studied	Cost Savings studied and captured	Clinical Outcomes measured
Abraham and Albayati (2011)*	Lit Review	N/A	CRS	N/A	ERAS	N/A	ERAS improves length of stay and reduction of complications in traditional open colorectal surgery, but findings do not show the same benefits for laparascopic surgeries. More research is needed.
Adamina, Gié, Demartines, and Ris (2013)*	Lit Review	N/A	Multiple	All	Perioperative care	N/A	Important elements of modern perioperative care:-Accelerated recovery pathways-Thromboembolism and antibiotic prophylaxis-Hyperoxygenation-Maintenance of normothermia-Avoidance of blood transfusions-Careful use of NSAIDs-Promotion of laparoscopic surgery-Chlorhexidine-alcohol skin preparations-Multidisciplinary meetings to facilitate care coordination
Boudreaux and Vetter (2013)	Editorial	N/A	Multiple	All	Efficiency & quality	N/A	This paper details the development, implementation, and results of a dedicated patient safety initiative within the UAB anesthesiology department (Section on Quality and Patient Safety). By adopting quality improvement and performance improvement techniques, the SQPS has initiated and completed more than 25 improvement projects and promoted a culture of patient safety in the department and health care system as a whole.
Butterworth and Green (2014)	Editorial	N/A	Multiple	N/A	Perioperative care	N/A	Anesthesiologists have the skill set and an opportunity to improve perioperative care in the US health system through PSH programs and similar initiatives. However, anesthesiologist training must be updated to reflect this emphasis, and anesthesiologists must be financially aligned to provide such care. To make this happen, anesthesiologists must provide evidence that they are best able to meet the need for perioperative care coordination.
Campbell (2009)	Editorial	N/A	Multiple	N/A	Improving surgical quality	N/A	Nonpayment for error strategies advocated by the Centers for Medicare and Medicaid Services are not supported by research and may actually undermine quality by stymying discussion about adverse outcomes. These 'never events' should be limited to a few

				TO	PIC 1: THE SUR	GICAL HOME CONCEPT	
Source	Setting	Scale of Study	Surgical Specialties Covered**	Patient Population Segments	Elements of PSH studied	Cost Savings studied and captured	Clinical Outcomes measured
							egregious errors. Instead, quality should be improved by following models like the Michigan Surgical Quality Collective.
Campbell Jr et al. (2008)	ACS- NSQIP database	n=33	Multiple	All patients	Perioperative care	N/A	Characteristics of high SSI outliers: Higher trainee-to-bed ratios (0.61 to 0,25, p<0.0001) Operations took longer (128.3 vs. 102.7, p<0.001) Characteristics of low SSI outliers: Patients less likely to present anemic in OR : (4.9% to 9.7%, p=0.007) Patients less likely to receive a transfusion : 5.1% vs. 8.0%, p=0.03 Generally smaller , more efficient , and had lower staff turnover Perioperative practices were similar between high and low surgical site infection outliers.
Cannesson and Kain (2014)	Editorial	N/A	Multiple	N/A	Perioperative care	N/A	ERAS and PSHs have similar goals (improved surgical outcomes and decreased costs). The key difference is that ERAS emphasizes a system of clinical protocols, while PSH programs encompass clinical protocols as well as care coordination across the entire perioperative spectrum.
Cheng (2013)*	Lit Review	N/A	All	N/A	Anesthesia	-Anesthesiologists should become familiar with health economics to be leaders in decision making in quality improvement processes	N/A
Clark and Spanswick (2013)*	Editorial	N/A	Multiple	All	Anesthesia	N/A	Key takeaways related to perioperative pain management: -Manage expectations and medication of patients presenting with preoperative pain -Manage patients with presurgical opioid dependence before surgery to minimize withdrawals and complications after surgery -Use multimodal analgesia when possible
Crosby et al. (2014)	Editorial	N/A	Multiple	N/A	Postoperative care	N/A	PSH programs aim to reduce postoperative complications, but postoperative cognitive dysfunction (POCD) and delirium, common complications of geriatric patients, may not be better managed under PSH programs, and programs that do formally diagnose and treat these complications may be penalized when compared to programs that do not.

				ТО	PIC 1: THE SUR	GICAL HOME CONCEPT	
Source	Setting	Scale of Study	Surgical Specialties Covered**	Patient Population Segments	Elements of PSH studied	Cost Savings studied and captured	Clinical Outcomes measured
Dexter and Wachtel (2014)	Editorial	N/A	Multiple	N/A	Perioperative care	N/A	This article discusses several net cost-reducing interventions common to PSH programs. The primary opportunities to reduce costs stem from the cessation of ineffective interventions and improving coordination of care and of personnel. Both of these opportunities require the use of informatics by anesthesiologists. Secondary opportunities that may reduce costs include improved preoperative assessment, faster surgery time, and faster postoperative recovery.
Ergina et al. (1993)*	Lit Review	N/A	Multiple	N/A	Perioperative care	N/A	This review proposes a general approach to the elderly surgical patient and applies it to the most significant sources of morbidity and mortality: pulmonary and cardiac complications.
Eskicioglu et al. (2009)*	Multiple	n=198	CRS	All	ERAS	N/A	Length of stay: 3 of 4 studies show reduced LOS (relative risk = 0.53, 95% CI .12 - 2.38) Reduced complications: 3 of 4 studies show reduced complications (relative risk = 0.61, 95% CI 0.42-0.88)
Fearon et al. (2005)*	Lit Review	N/A	AS	N/A	ERAS	N/A	Core protocol elements listed for preoperative , intraoperative , and postoperative care
Fink et al. (2007)	VA & university hospitals	n=32,624	GS	Female	Efficiency & quality	N/A	Unadjusted 30-day mortality was not significantly different in the VA and private sector hospitals, while morbidity was slightly higher in private sector hospitals compared to the VA, largely due to differences in rates of UTIs.
Fleisher et al. (2007)	Editorial	N/A	Multiple	All	Perioperative care	N/A	This report provides guidelines for various patients and diseases , as well as surgery- specific issues , preoperative testing, perioperative surveillance and therapies, anesthetic considerations, and postoperative and long-term care management.
Fried, Ferrucci, Darer, Williamson, and Anderson (2004)	Lit Review	N/A	Multiple	The elderly	Frailty	N/A	This article provides a narrative review of the current understanding of the definitions and distinguishing characteristics of each of disability, frailty, and comorbidity, including their clinical relevance, distinct prevention, therapeutic issues, and how these characteristics are related.

				TO	PIC 1: THE SUR	GICAL HOME CONCEPT	
Source	Setting	Scale of Study	Surgical Specialties Covered**	Patient Population Segments	Elements of PSH studied	Cost Savings studied and captured	Clinical Outcomes measured
Fritsch et al. (2012)*	Hospital of Schwarza ch	n=1,363	Multiple	Elective patients	Perioperative care	N/A	Best predictors of perioperative complications : Age: OR 1.028, p=0.001 Invasiveness of procedure: OR=5.278, p<0.0001 History of renal disease: OR 4.987, p<0.001 History of anemia: OR 4.269, p=0.004 Abnormal ECG: OR 2.814, p=0.005
Furze et al. (2009)*	Hull and East Yorkshire Hospitals Trust	n=204	TS	First-time elective patients	Preoperative counseling	The program produced incremental cost savings of £288.83 per quality-adjusted life Year	No significant differences in anxiety or length of stay between routine preoperative counseling group and cognitive-behavior program group after 8 weeks but before surgery. Significant differences in: depression (7.79, p=0.008); physical functioning (0.82, p=0.001); cardiac misconceptions (2.56, p<0.001) after 8 weeks but before surgery.
Garson et al. (2014)	UC Irvine	n=146	GS	Hip and knee arthroplasty patients	Perioperative care	N/A	Results from implementation of a PSH program: Incidence of complications: 0.0% Incidence of blood transfusion: 6.2% In-hospital mortality: 0.0% 30-day readmission: 0.7% SCIP measures: All 100% Median LOS: 3 days Non-home discharge: 48%
Goldhill et al. (2012)*	Editorial	N/A	Multiple	N/A	Perioperative care	N/A	A separate study showed that levels of mortality in non-cardiac surgery in the UK is 3 to 8 times of that in the US. This study shows that many process improvements, including the expansion of critical care beds, have been made since the time the underlying data was recorded and that the UK is significantly more cost effective at reducing mortality than the US. These changes have changed anesthesiology and will continue to.
Graham, Bowen, Strohecker, Irgit, and Smith (2014)	Geisinger Health System	n=194	GS	Hip fracture patients	Postoperative care	Mean costs for PCMH were lower, but not significantly different for pharmacy and non- pharmacy costs.	Patients whose postoperative care was managed by a patient-centered medical home (PCMH) had: Lower 6-month and 12-month mortality (11% vs. 26%, p<0.01 and 23% vs. 30%, p=0.12, respectively) Similar quality of life scores

				TO	PIC 1: THE SUR	GICAL HOME CONCEPT	
Source	Setting	Scale of Study	Surgical Specialties Covered**	Patient Population Segments	Elements of PSH studied	Cost Savings studied and captured	Clinical Outcomes measured
							Improved Harris Hip scores (73 vs. 64, p=0.04)
Gustafsson et al. (2012)	Lit Review	N/A	CRS	N/A	ERAS	N/A	Provides best practice recommendations for various items involved in ERAS programs, including preoperative counseling and recommendations, anesthesia, surgical prep, surgical procedures, postoperative fluid management and nutrition, and early mobilization.
Henderson et al. (2007)	VA & university hospitals	n=112,49 7	GS	Male	Efficiency & quality	N/A	Unadjusted 30-day mortality was higher in the VA than in the private sector, while unadjusted morbidity was lower in the VA. The higher mortality in the VA may be due to the increased frequency of complex procedures.
Hoff (2013)	Accredite d medical homes	n=51	N/A	All	Efficiency & quality	N/A	In the implementation of a PCMH, the researchers identified hard implementation practices (normative activities and interventions) and soft best practice (practice social structure and everyday patient interactions). External stakeholders are less likely to value and encourage soft best practices.
Holt (2014)	Lit Review	N/A	Multiple	N/A	Perioperative care	N/A	The PSH is a potential solution to the problem of reducing costs and increasing quality in the face of an aging population and changing payment landscape, and anesthesiologists are well positioned to lead such initiatives.
Hooper (2013)	Editorial	N/A	Multiple	N/A	Preoperative testing	N/A	Discussion of various models of preanesthesia care , including programs staffed by RNs compared to programs staffed by RN anesthetists and nurse practitioners.
Huang and Schweitzer (2013)	Editorial	N/A	Multiple	N/A	Perioperative care	N/A	The PSH provides a means for anesthesiologists to adapt to the changing healthcare environment.
Huddleston et al. (2004)	Rochester Medical Hospital	n=526	GS	Elderly	Perioperative care	Total costs did not vary between hospitalist and non-hospitalist groups	Complication rates: lower in hospitalist-run group (61.6% vs. 49.8%) Unadjusted length of stay: no difference Adjusted length of stay: shorter in hospitalist- run group (5.1 vs. 5.6 days)

				TO	PIC 1: THE SUR	GICAL HOME CONCEPT	
Source	Setting	Scale of Study	Surgical Specialties Covered**	Patient Population Segments	Elements of PSH studied	Cost Savings studied and captured	Clinical Outcomes measured
Hutter et al. (2007)	VA & university hospitals	n=35,232	VS	Male	Efficiency & quality	N/A	Unadjusted 30-day mortality was lower in the VA than in the private sector, but virtually indistinguishable after risk adjustment. Unadjusted moribidy was also lower in the VA and remained lower after risk adjustment.
Ilfeld et al. (2010)	Alta Bates Summit Medical Center	n=81	GS	All	Anesthesia	N/A	Readiness for discharge: faster in cFNB thanin control group - 47 hours vs. 62 hours(p=0.028)4-day cFNB decreased time to discharge by20%. Most of this decrease came fromanalgesia improvement.
Ilfeld et al. (2006)	University of Florida	n=32	GS	All	Anesthesia	N/A	Time to discharge: lower in CISB patients (12 hours vs. 51 hours, p<0.001) CISB required less morphine but reported less pain and tolerated more external rotation.
Ilfeld, Wright, Enneking, and Morey (2005)	Shands Hospital at the University of Florida, Gainesvill e	n=25	GS	All	Anesthesia	N/A	Median achievement of surgeon-defined goal for shoulder elevation : 85% with CISB, 33% without (p=0.048) Median achievement of surgeon-defined goal for external rotation : 100% with CISB, 17% without (p<0.001) Numeric rating pain score : 2.0 with CISB, 8.5 without (p<0.001) 24-hour post-operation numeric rating pain score least, median, and highest: 0.0, 1.0, and 3.0 with CISB, 2.0, 6.0, 8.0 without (p=0.030, p<0.001, p<0.001)
Johnson et al. (2007)	VA & university hospitals	n=3,993	VS	Female	Efficiency & quality	N/A	Unadjusted 30-day mortality was lower in the VA than in the prviate sectors, but virtually indistinguishable after risk adjustment. Unadjusted morbidity was also lower in the VA and remained lower after risk adjustment.
Kahokehr et al. (2009)*	Lit Review	N/A	CRS	N/A	ERAS	N/A	ERAS programs are highly unstandardized and not followed with consistency across countries, and practice is not keeping up with the most recent evidence. Compliance with ERAS protocol elements varied from 92% for epidural anesthesia to 40% for 3-day postoperative stay. Recommendations for practice specific to colorectal surgery included. See Lassen, Coolsen et al. (2012) for similar study on pancreatoduodenectomy

				TO	PIC 1: THE SUR	GICAL HOME CONCEPT	
Source	Setting	Scale of Study	Surgical Specialties Covered**	Patient Population Segments	Elements of PSH studied	Cost Savings studied and captured	Clinical Outcomes measured
Kain et al. (2014)	Editorial	N/A	Multiple	N/A	Perioperative care	N/A	Although conclusive evidence to support the effectiveness of the PSH does not yet exist, preliminary evidence for the success of PSH programs, combined with the established success of ERAS programs, indicate the PSH has promise as a solution that will potentially improve the quality of care and reduce costs. This article also discusses operational and fiscal barriers that may hinder PSH effectiveness.
H. Kehlet (1997)	Lit Review	N/A	Multiple	N/A	Postoperative care	N/A	Preoperative factors contributing to postoperative morbidity: pre-existing disease, malnutrition, alcohol abuse Intraoperative factors contributing to postoperative morbidity: surgical stress, blood transfusions, heat loss Postoperative factors contributing to postoperative morbidity: pain, immunosuppression, nausea, hypoxaemia, sleep disturbances, muscle loss, immobilization, drains
H. Kehlet (2011)*	Lit Review	N/A	CRS	N/A	ERAS	N/A	Fast-track colonic surgery can be successfully implemented in community hospitals. Two recent studies provide evidence of the benefits of this fast-track surgical approach on postoperative gastrointestinal recovery after laparoscopic and open procedures. The issue is no longer whether fast-track colonic surgery is better than standard care, but how to improve the approach and its implementation.
H. Kehlet and Mythen (2011)*	Editorial	N/A	Multiple	High-risk patients	Perioperative care	N/A	There is a general agreement that the preoperative high-risk patient still carries a high risk of postoperative morbidity and mortality. Many individual efforts have been made to improve this, but research indicates that combating this problem will require a multimodal approach. This will require further refinement of individual factors and development of research-based interventions to target these factors.
S. F. Khuri (2006)	Editorial	N/A	Multiple	All	Efficiency & quality	N/A	The NSQIP has reduced postoperative complications in the VA and has expanded to the private sector in recent years. The success

				TO	PIC 1: THE SUR	GICAL HOME CONCEPT	
Source	Setting	Scale of Study	Surgical Specialties Covered**	Patient Population Segments	Elements of PSH studied	Cost Savings studied and captured	Clinical Outcomes measured
							of the NSQIP has been in part to its redefiniton of patient safety: (1) safety is an integral part of quality of care and cannot be separated; (2) patient safety is primarily determiend by quality of care; (3) reliable outcome data are necessary to identify and address systematic problems; and (4) QI efforts should aim to eliminate these systematic errors.
S. F. Khuri et al. (1997)	VA hospitals	n=87.078	Multiple	Major noncardiac surgical patients	Efficiency & quality	N/A	Mortality rates varied for all operations across the 44 hospitals studied. After risk adjustment , observed-to-expected ratios ranged from 0.49 to 1.53, and 93% of hospitals changed rank after adjustment, indicating that the VA system developed to compare risk-adjusted rates meaningfully ranked hospitals and could thus be a means to monitor and improve care.
(S. F. Khuri et al., 1998)	VA hospitals	n-417,944	Multiple	All	Efficiency & quality	N/A	Using risk adjusted observed-to-expected mortality rates , calculated using presurgical risk and process of care data, high and low outliers were more accurately identified, allowing improved comparative assessment of care and potentially enhanced quality of care for low outliers.
S. F. Khuri, Daley, and Henderson (2002)	Editorial	N/A	Multiple	All	Efficiency & quality	N/A	As mandated by Congress, the NSQIP collects data throughout the perioperative spectrum and uses this data to provide feedback to providers to improve the quality of care, particularly through the improvement of the system. In the future, NSQIP intends to promote measures beyond morbidity and mortality to include items such as long-term survival, functional outcomes, quality of life, patient satisfaction, and cost and process items in addition to outcome items.
Kuntz and Vera (2005)*	University Hospital Hamburg- Eppendorf	n=57,000	Multiple	All	Efficiency & quality	Physician effiiciency is improved when transfer pricing is used for anesthesia services.	N/A
K. Lassen et al. (2009)	Lit Review	N/A	CRS	All	Perioperative care	N/A	Most ERAS protocols have adequate support from good quality trials more meta-analyses.

				TO	PIC 1: THE SUR	GICAL HOME CONCEPT	
Source	Setting	Scale of Study	Surgical Specialties Covered**	Patient Population Segments	Elements of PSH studied	Cost Savings studied and captured	Clinical Outcomes measured
Lee, Kerridge et al. (2011)*	Lit Review	N/A	All	N/A	Perioperative care	Benefits of perioperative systems : Increased surgical volume and flow (20%-35%) Fewer cancellations of surgeries (1% - 8%) Reduction in number (23% - 55%) and costs (40%-59%) of preoperative cancellations Reduction in cost per patient (8%-18%)	Perioperative systems are the model of care in the North America, Australia, New Zealand, and increasingly in Europe Benefits of perioperative systems : Shorter preoperative length of stay (0.2 to 1.3 days) Lower risk of wound infection (relative risk 0.30, 95% CI 0.12–0.78)
Lloyd et al. (2010)*	Leicester Royal Infirmary and the Adelaide and Meath Hospital in Dublin	n=117	CRS	All	ERAS	N/A	Laparascopic: RAPID protocol group had significantly shorter median stay (6 vs. 9.5 days, p=0.01), tolerance of full diet (2 vs. 3 days, p=0.002), and reduction in pain score on days 1 and 3 (p=0.004, p<0.0001). Open resections: RAPID protocol group had significantly shorter stay (7.5 vs. 12 days, p=0.04) and pain score on day 3 (p=0.006).
M. F. Newman et al. (2013)	Editorial	N/A	All	N/A	Preoperative assessment	Key point: it is difficult to implement preanesthesia screening guidelines in the real world. One solution is perioperative clinics that do prescreening and coordinate care. This will be especially important as the focus shifts to long-term care and a value-based economy.	N/A
Nielsen, Jørgensen, Dahl, Pedersen, and Tønnesen (2010)*	Hospital	n=60	GS	All	Prehabilitation	N/A	Postoperative stay: 5 days for prehabilitation, 7 days for standard procedure (p=0.007) Complications: no significant difference Functionality: prehabilitation group had higher post-op function (p<0.001) based on Roland Morris questionnaire; reached recovery milestones faster (1-6 days vs. 3-13 days, p=0.001) Pain: no significant difference Satisfaction: higher in prehabilitation group than control group (15/28 in prehabilitation, 7/32 in traditional, p=0.02)

				ТО	PIC 1: THE SUR	GICAL HOME CONCEPT	
Source	Setting	Scale of Study	Surgical Specialties Covered**	Patient Population Segments	Elements of PSH studied	Cost Savings studied and captured	Clinical Outcomes measured
Nuelle and Mann (2007)	Single surgeon's practice	n=50	GS	All	Surgical procedures	N/A	Time to walk 100 ft. with a walker : 97.4 with standard protocol, 24.6 with minimally invasive protocol (p<0.0001) Time to achieve bathroom independence : standard 103, minimally invasive 29.3 (p<0.0001) Time to get in/out of bed: standard 97.9 hours, minimally invasive 27.2 (p<0.0001) Time to achieve 90* of flexion : standard 96, minimally invasive 25.6 (p<0.001) Length of stay : 5.4 days for standard, 2.8 for minimally invasive (p<0.001)
Oates et al. (2000)*	Primary care	n=39 physicians n=315 patients	All	Primary care patients	Patient- centered practice	Medical care utilization : patient perception of patient-centeredness associated with fewer diagnostic tests and referrals	Patient perception of patient-centeredness: patient-centered communication was correlated with patient perceptions of common ground with physician (r=0.16, p=0.01) Patient symptom discomfort and concern : patient perception of patient-centeredness associated with positive health outcomes and lower levels of post-encounter discomfort
Pasternak (2009)*	Editorial	N/A	Multiple	N/A	Preoperative testing	This excessive testing problem affects 30 million patient procedures with an estimated cost in excess of \$18 billion.	Many studies have shown that preoperative testing is excessive and costly, but the problem has not improved. The profession should move toward a policy of selective testing instead.
Prager et al. (2005)	Hospitals participati ng in BCBS Michigan plans	n=60 participati ng hospitals	TS, VS, GS	N/A	Perioperative care	Improving quality requires the development of new data registries based on rigorous data collection systems, an explicitly platform for quality improvement, and a focus on data confidentiality and trust. The information in these registries is submitted to BCBS as evidence of quality improvement efforts, and BCBS reimburses them using a 'pay-for- participation' scheme, rather than pay-for- performance. This translates quality improvement efforts into reimbursement.	N/A
Rowell, Turrentine, Hutter, Khuri, and Henderson (2007)	VA & university hospitals		Multiple	All	Efficiency & quality		Using NSQIP data, each of the sites studied engaged in quality improvement efforts. The Salt Lake City VA hospital reduced wound complication rates by 47%; the University of Viriginia hospital reduced SSIs for abdominal surgery patients by 36%; Massachussetts

				ТО	PIC 1: THE SUR	GICAL HOME CONCEPT	
Source	Setting	Scale of Study	Surgical Specialties Covered**	Patient Population Segments	Elements of PSH studied	Cost Savings studied and captured	Clinical Outcomes measured
							General reduced UTIs for vascular surgery patients by 74%.
Ryan, Davoren, Grant, and Delbridge (2004)*	Royal North Shore Hospital	n=1,601	Multiple	All	Perioperative care	N/A	23-hour discharge center discharge compliance: 86% Only 3% needed future unexpected medical care
Shafer and Donovan (2014)	Editorial	N/A	Multiple	All	Perioperative care	N/A	This article details the vision of the ASA for the PSH as well as a summary of several articles appearing in this issue of Anesthesia and Analgesia. These articles are included in this review.
Stenholm et al. (2008)	Lit review	N/A	Multiple	Elderly obese patients	Frailty	N/A	Age-related muscle weakness is linked to changes in muscle composition and quality rather than muscle mass. This is especially important when studying older obese people.
Swank et al. (2011)	Hospital	n=71	GS	All	Prehabilitation	N/A	Leg strength: increased with prehabilitationtreatmentAbility to perform functional tasks: improvedwith prehabilitation treatment (p<0.05)
Szokol and Stead (2014)	Editorial	N/A	Multiple	All	Perioperative care	N/A	The Accountable Care Organization movement will require more of anesthesiologists in terms of perioperative care coordination and will change the way anesthesiologists are reimbursed. The PSH is one way for anesthesiologists to manage these demands.
Topp, Swank, Quesada, Nyland, and Malkani (2009)	Hospital	n=54	GS	All	Prehabilitation	N/A	3 months after surgery: both groups increased strength and decreased pain; treatment group increased functional capacity, while control group did not. Control group saw an increase strength asymmetry in quadriceps.
Varadhan, Lobo, and Ljungqvist (2010)*	Lit Review	N/A	Multiple	N/A	ERAS	See discussion of clinical outcomes.	This article goes through a history of ERAS, components of the ERAS system, the role of laparascopy based on randomized controlled trials, costs and savings of ERAS implementation, and implementation difficulties and best practices.
Krishna K Varadhan et al. (2010)*	Meta- analysis	n=6 studies n=452 patients	CRS	All	ERAS	N/A	Length of stay: 2.5 days less in ERAS, p<0.0001 Risk of complications: RR 0.53, p<0.00001 Readmission rates: no significant difference Mortality: no significant difference

				ТО	PIC 1: THE SUR	GICAL HOME CONCEPT	
Source	Setting	Scale of Study	Surgical Specialties Covered**	Patient Population Segments	Elements of PSH studied	Cost Savings studied and captured	Clinical Outcomes measured
Vetter, Boudreaux, et al. (2012)	UAB Medical Center	n=112	Multiple	All	Efficiency & quality	N/A	Significant disagreement exists among practitioners regarding the perioperative management of surgical patients with a coronary artery stent. 2 algorhithms were developed to (1) dictate which stent patients can have elective surgery without onsite cardiac catheterization laboratories and (2) identify emergent transfer of one of these patients who experiences a perioperative ST segment elevation MI.
Vetter, Boudreaux, Jones, Hunter Jr, and Pittet (2014)	Editorial	N/A	Multiple	N/A	Perioperative care	N/A	This article discusses the pressures leading to the development of the PSH, notably the PCMH and an emphasis on patient-centered care. The article then discusses how the PSH could achieve the 'Triple Aim' of improved quality for individual patients, improved population health, and reduced per capita costs. This article also addresses PSH staffing and suggestions for payment systems that incorporate the entire institution (i.e more than just anesthesia).
Vetter, Goeddel, et al. (2013)	Lit Review	N/A	Multiple	N/A	Perioperative care	N/A	The implementation of an anesthesiologist-run perioperative surgical home may improve clinical outcomes through process standardization and improved communication, while simultaneously reducing resource consumption by eliminating unnecessary testing, processes, and delays.
Vetter, Ivankova, et al. (2013)	Editorial	N/A	Multiple	All	Perioperative care	N/A	This article provides a basic model for a PSH, including key components of each phase of care and other key design elements. The authors then discuss the measures needed to validate PSH care as compared to traditional surgical care in terms of patient-centeredness, clinical adherence to guidelines, quality and safety, and cost. Finally, the authors discuss the optimal study design to investigate these measures.
Watters (2002)*	Editorial	N/A	Multiple	Elderly surgical patients	Perioperative care	N/A	Age is a proxy for many other social, biologic, and clinical factors, and the elderly are inherently heterogeneic. This must be considered when evaluating an individual elderly patient for a surgical process.

				ТО	PIC 1: THE SUR	GICAL HOME CONCEPT	
Source	Setting	Scale of Study	Surgical Specialties Covered**	Patient Population Segments	Elements of PSH studied	Cost Savings studied and captured	Clinical Outcomes measured
D. N. Wijeysundera, Austin, Beattie, Hux, and Laupacis (2009)	79 hospitals in Ontario	n=204,81 9	Multiple	Non- cardiac elective surgery patients	Preoperative testing	N/A	Preoperative testing : performed on 38% of patients Patient- and surgery level factors explained on 5.9% of variation in consultation rates Consultation rate differences across hospitals varied greatly, from 1% to 89.7% but were not explained by surgical volume, teaching status, or patient- and surgery-level factors. Thus, the individual hospital is the primary explanatory variable as to whether patients will undergo preoperation testing.
Duminda N Wijeysundera et al. (2012)*	79 hospitals in Ontario	n=204,81 9	Multiple	All	Preoperative testing	N/A	 Preoperative testing: performed on 38% of patients Patient- and surgery level factors explained on 5.9% of variation in consultation rates Consultation rate differences across hospitals varied greatly, from 1% to 89.7% but were not explained by surgical volume, teaching status, or patient- and surgery-level factors. Thus, the individual hospital is the primary explanatory variable as to whether patients will undergo preoperation testing.
Wiklund and Rosenbaum (1997a)	Editorial	N/A	Multiple	All	Preoperative care	N/A	In part 1 of this article, the authors discuss advances in the field of perioperative anesthesia in the last thirty years, including improvements in preoperative care, such as cardiac testing for noncardiac surgery, perioperative myocardial ischemia, and transfusion practice. The article also discusses advances in anesthetic agents, including muscle relaxants, opioids, inhalational anesthetics, and nonopioid intravenous anesthetics.
Wiklund and Rosenbaum (1997b)	Editorial	N/A	Multiple	All	Preoperative care	N/A	In part 2, the article continues to discuss advances in anesthetic agents, in particular local anesthetics. Changes in pain management are discussed, including mutlimodal anesthesia and preemptive analgesia, as well as new anesthetic techniques, such as pulse oximetry and capnography and airway managmeent. Finally, the article discusses changes in postoperative management of patients: treatment of nausuea and vomiting, aspiration pneumonitis, and renal failure/hepatic dysfunction.

	TOPIC 1: THE SURGICAL HOME CONCEPT										
Source	Setting	Scale of Study	Surgical Specialties Covered**	Patient Population Segments	Elements of PSH studied	Cost Savings studied and captured	Clinical Outcomes measured				
Williams, DeRiso, Engel, et al. (1998)	Ambulato ry surgery center in University of Pittsburgh Medical Center (UPMC),	n=503	GS	ASA physical status I and II patients who selected general anesthesia	ERAS	See discussion of clinical outcomes.	Clinical pathway regional anesthesia, compared to general anesthesia, led to increased pharmacy and materials costs and increased turnover time (p<0.001 for both), but recovered better (p=0.003), had lower unexpected readmission rates (p=0.002), and required fewer nursing interventions (p<0.001). Postanesthesia care unit bypass was more common in clinical pathway regional anesthesia (p<0.001).				
Wind et al. (2006)*	Lit Review	n=6 studies n=512 patients	CRS	N/A	ERAS	N/A	Hospital stay: 1.56 days less for fast-track surgery programs than traditional Morbidity: RR 0.56 less than traditional Readmission rates and mortality not significantly different between fast-track and traditional programs.				

Appendix B: Literature Charting for Topic 2 – Early Patient Engagement

**LEGEND: SURGICAL SPECIALTIES								
Abbreviation	Full name							
AS	Abdominal surgery							
CS	Cosmetic surgery							
CRS	Colorectal surgery							
GS	General surgery							
PDS	Pediatric surgery							
TRS	Trauma surgery							
VS	Vascular surgery							
TS	Thoracic surgery							
TTS	Transplant surgery							

	TOPIC 2: EARLY PATIENT ENGAGEMENT											
Source	Setting	Scale of Study	Surgical Specialties Covered**	Patient Population Segments	Elements of PSH studied	Cost Savings studied and captured	Clinical Outcomes measured					
Aboulian et al. (2010)	County Hospital	n=54	CRS	All	ERAS	N/A	ERAS patients saw: Decrease in intravenous fluids during surgery (p=0.001) and over next 3 days (p=0.0017) Decrease in hospital stay : 4 days vs. 6 days, p=0.003 No difference in complication or readmission rates					
Bader, Sweitzer, and Kumar (2009)	Preoperati ve assessmen t clinics	n=3	Multiple	N/a	Preoperative assessment	-Standardized preoperative assessment procedures helps ensure that payor, regulatory, and accreditation guidelines are met -Careful triage ensures that low-risk patients are not given unnecessary costly assessments and that high-risk patients receive all testing before the day of surgery -EHR reduce redundancy, provide a database for research, and create standardized patient information -Perioperative guidelines should be created, updated, and made available for various steps and surgeries						
Bilku, Dennison, Hall, Metcalfe, and Garcea (2014)	Lit Review	N/A	GS	Adults	Preoperative care		17 randomized controlled trials (RCTs) met inclusion criteria. Preoperative carbohydrate drinks improved patients' insulin resistance and postoperative comfort . There was no evidence to support improvement in postoperative muscle mass . No adverse events were reported as a result of use of preoperative carbohydrate drinks.					
Carli et al. (2009)*	McGill University Health Centre	n=25	CRS	All	ERAS	N/A	Length of stay: median 3 days (95% CI 3-4 days); 16 patients discharged on day 3, 9 discharged later due to infection, pain, urinary retention, anemia, or social indicators. All patients recovered bowel function and full diet within 36 hours. 2 patients were readmitted.					
Correll et al. (2006)	Weiner Center for Preoperati ve Evaluatio n, Boston, MA	n=5,083	Multiple	All	Preoperative assessment	12.7% of patients had medical issue identified in clinic visit. 647 cases required additional information and testing. If these issues had not been caught in the preoperative clinic, each delay would cost the hospital \$1,500 on average, or a total of \$970,500.	N/A					

				TO	PIC 2: EARLY F	ATIENT ENGAGEMENT	
Source	Setting	Scale of Study	Surgical Specialties Covered**	Patient Population Segments	Elements of PSH studied	Cost Savings studied and captured	Clinical Outcomes measured
Dasgupta, Rolfson, Stolee, Borrie, and Speechley (2009)*	Tertiary care teaching hospital (Canada)	n=125	Multiple	Noncancer patients 70 years or older	Frailty	N/A	Postoperative complications : increased with frailty (p=0.02); patients with EFS (Edmonton Frail Scale) greater than 7 associated with greater complications - OR 5.02 Length of postoperative stay : increased with frailty (p=0.004) Inability to be discharged home : increased with frailty (p=0.01); patients with EFS (Edmonton Frail Scale) greater than 7 had a 40% chance of not going home, p<0.002
Ferschl et al. (2005)	University of Chicago Hospitals	n=6.524	Multiple	All	Preoperative assessment	Reduction in day surgeries cancelled-day of : 8.4% in suites with preanesthesia clinic, 16.2% in traditional (p<0.001) Reduction in general OR surgeries cancelled- day of : 5.3% in suites with preanesthesia clinic, 13.0% in traditional (p<0.001) Time in OR : 3 minutes less for day surgery patients (p<0.001) and 2 minutes for general surgery patients (p=0.015)	N/A
Fritsch et al. (2012)*	Hospital of Schwarza ch	n=1,363	Multiple	All	Preoperative assessment	N/A	Best predictors of perioperative complications: Age : OR 1.028, p=0.001 Invasiveness of procedure : OR=5.278, p<0.0001 History of renal disease : OR 4.987, p<0.001 History of anemia : OR 4.269, p=0.004 Abnormal ECG : OR 2.814, p=0.005
Glick et al. (2006)	Response letter	N/A	Multiple	N/A	Preoperative assessment	Preanesthesia medical clinics are beneficial to all, but in a world of constrained resources, should focus their attention on at-risk patients, such as the elderly and those with significant comorbidities. More work is needed to demonstrate the potential savings generated by a preanesthesia clinic in order to incentivize hospitals to fund them.	N/A
Hebl et al. (2008)	Mayo Clinic	n=200	GS	All patients	Anesthesia	N/A	TJRA patients had: Shorter length of stay :3.8 days vs. 5, p<0.001 Earlier discharge eligibility : 1.7 days p<0.0001 Improved joint range of motion : 90* vs. 85*, p=0.008 Lower pain scores , p<0.001 and opioid requirements , p=0.04 Lower urine retention (50% vs. 31%, p<0.001) and ileus formation (7% vs. 1%, p=0.01)

	TOPIC 2: EARLY PATIENT ENGAGEMENT										
Source	Setting	Scale of Study	Surgical Specialties Covered**	Patient Population Segments	Elements of PSH studied	Cost Savings studied and captured	Clinical Outcomes measured				
Jones et al. (2011)*	Queen Elizabeth Hospital	n=472	GS	All	Preoperative education	N/A	Length of stay: 7 days in traditional, 5 in education treatment Inpatient complications 24-hour readmission rate 3-month readmission rate				
Knox et al. (2009)*	Saint Luke's Hospital, Kilkenny, Ireland	n=2,826	Multiple	All	Preoperative assessment	Reduction in case cancellations: 114 afterimplementation of preoperative testing clinic vs.256 before, p<0.001	N/A				
R. Lee et al. (2011)	Nationwid e valve surgeries over past 15 years	n=623,03 9	TS	All in STS data set	Surgical procedures	N/A	Unadjusted operative mortality: highest for multiple valve surgery; but rates of all surgeries fell over 15 years (p<0.001) Adjusted odds ratios for mortality: decreased for all surgeries other than tricuspid (p<0.031). Composite of mortality and major complications: did not improve due to increased rates of pulmonary/infectious death and complications (increased 78% and 39%, respectively)				
Leichtle et al. (2012)	Michigan Surgical Quality Collaborat ive	n=4,340	CRS	All	Postoperative care	N/A	Risk factors for anastomotic leakage: Fecal contamination (OR 2.51, p=0.02) Intraoperative blood loss more than 100 mL (1.62, p=0.02)				
Mayo et al. (2011)*	McGill University Health Centre	n=95	CRS	All	Prehabilitation	N/A	Patients who improve during prehabilitation were more likely to achieve baseline walking capacity than those who showed no change or deteriorated (77% vs.59% and 32%, p=0.0007). Complication risk increased for those whose walking ability decreased in prehabilitation.				
Mythen (2011)	Editorial	N/A	All	N/A	Perioperative care	N/A	As perioperative care has improved, the key question to consider for an elective surgical patient is, 'Is this patient ready for surgery ?' This is best answered by assessing risk based on age, comorbidities, and functional capacity				
O'Brien, McKeough, and Abbasi (2013)*	The Alfred cardio surgical unit	n=118	TS	Elective cardiac patients	Preoperative education	Written pre-surgical education provides most patients with adequate understanding of what to expect post surgery. A small subset of patients indicated that they would prefer verbal preoperative education.	N/A				

	TOPIC 2: EARLY PATIENT ENGAGEMENT										
Source	Setting	Scale of Study	Surgical Specialties Covered**	Patient Population Segments	Elements of PSH studied	Cost Savings studied and captured	Clinical Outcomes measured				
O'Doherty et al. (2013)*	Literature review	n=10	TS	All	Prehabilitation	N/A	Preoperative aerobic exercise was associated with reduced postoperative and ICU stay , and improved postoperative physical fitness . While the specific exercise interventions studied varied, adherence was generally strong.				
Pattakos et al. (2012)	Cleveland Clinic	n=4,031	TS	All	Postoperative care	Nonhome discharge can be predicted using preoperative testing. Using this preoperative data to predict discharge could improve transition planning and shorten hospital stay.	N/A				
Ramirez et al. (2011)*	Hospital	n=300	CRS	All	ERAS	N/A	Compliance to ERAS protocol : overall 65% but varied across components, ranging from 99% providing perioperative information to 40.6% taking early fluids by mouth. Average LOS 6 days; 3% readmission rate; most complications were surgical (24%)				
Vazirani et al. (2012)	Veterans Administr ation Greater Los Angeles Healthcar e System	n=5,223	Multiple	All	Preoperative assessment	N/A	Length of stay decreased for patients with ASA score of 3 or higher (p<0.0001) after addition of hospitalist-run preanesthesia clinic. Reduction in same-day cancellations: 8.5% to 4.9%, p=0.065 Inpatient mortality reduced: 1.27% to 0.36%, p=0.0158 More perioperative beta blockers and stress tests (p<0.0001, p=0.012)				
D. N. Wijeysundera et al. (2009)*	Multiple research databases	n=271,08 2	Multiple	All	Preoperative assessment	N/A	Assessment increased 34% from 1993 to 2004 Length of stay: consultation decreased 0.35%, p<0.001 Mortality: consultation did not significantly reduce (0.98% difference, p=0.20)				
Wong et al. (2012)*	Meta- analysis	n=25 studies	All	N/A	Postoperative care	N/A	Cessation of smoking more than 4 weeks before surgery reduced risk of respiratory complications by 23% compared to smokers; 8 weeks, 47%; more than 8-weeks, comparable to non-smoker risk Cessation of smoking 3-4 weeks before surgery reduced wound-healing complications than current smokers or those who ceased smoking less than 3 weeks prior to surgery				

Appendix C: Literature Charting for Topic 3 – Reduced Preoperative Testing

**LEGEND: SURGICAL SPECIALTIES									
Abbreviation	Full name								
AS	Abdominal surgery								
CS	Cosmetic surgery								
CRS	Colorectal surgery								
GS	General surgery								
PDS	Pediatric surgery								
TRS	Trauma surgery								
VS	Vascular surgery								
TS	Thoracic surgery								
TTS	Transplant surgery								

				TOP	C 3: REDUCED	PREOPERATIVE TESTING	
Source	Setting	Scale of Study	Surgical Specialties Covered**	Patient Population Segments	Elements of PSH studied	Cost Savings studied and captured	Clinical Outcomes measured
Badner, Craen,	Preadmiss	n=370	Multiple	All	Preoperative	A screening assessment completed by the patient	N/A
Paul, and Doyle	ion clinic				assessment	and screened by a preadmission clinic nurse	
(1998)*						anesthetist to determine further assessment	
						needs. The assessment resulted in the correct	
						outcomes 84% of the time, allowing for	
						increased utilization of medical personnel.	
Baron et al. (2014)*	Inpatient surgical patients in 28 European countries	n=39,309	Multiple	Non- cardiac and non- neurologica l patients over 16 years old	Preoperative assessment	N/A	Patients with severe anemia had higher in-hospital mortality than patients without anemia, longer length of stay (p <0.0001), and increased postoperative admission to the ICU (p <0.0001).
Brown and Brown (2011)	University of Arizona tertiary care hospital	n=19 physicians n=4 nurse administra tors	Multiple	N/A	Preoperative assessment	N/A	An interview with 23 physicians and nurse administrators that unnecessary preoperative tests are ordered as a result of (1) practice tradition, (2) the belief that other physicians require them, (3) medicolegal worries, (4) concerns about surgical delays and cancellations, and (5) lack of guidelines.
Chung et al. (2009)*	Toronto Western Hospital	n=1,061	Multiple	All	Preoperative assessment	1,558 tests were ordered and cancelled for 480 patients resulting in a total savings of Canadian \$18,447, or \$38.50 per patient.	There was no significant difference in the rate of adverse events between the treatment and control groups.
Cooper et al. (2013)	Johns Hopkins Multidisci plinary Pancreas Cancer Clinic	n=101	GS	All	Efficiency & quality	Excessive preoperative testing on pancreas masses increased cost by \$3,371 and extended length of time to surgery.	N/A
Finegan et al. (2005)*	Tertiary care preadmiss ion clinic	n=938	TS	All	Preoperative assessment	The mean cost of testing was reduced to \$73/patient.	More complications were noted in the group in which tests were ordered by the anesthesiologists, but this finding appears to be unrelated to the testing ordering practice being examined.
J. P. Fischer et al. (2014)	Lit Review	N/A	CS	All	Preoperative assessment	Patients with no comorbidities had a significantly lower rate of abnormal findings (p<0.0001), but 59.4% underwent preoperative testing.	Neither testing nor the presence of abnormal test results were associated with postoperative adverse outcomes

				TOP	IC 3: REDUCED	PREOPERATIVE TESTING	
Source	Setting	Scale of Study	Surgical Specialties Covered**	Patient Population Segments	Elements of PSH studied	Cost Savings studied and captured	Clinical Outcomes measured
Fritsch et al. (2012)*	Hospital of Schwarza ch	n=1,363	Multiple	All	Preoperative assessment	N/A	Best predictors of perioperative complications: Age : OR 1.028, p=0.001 Invasiveness of procedure : OR=5.278, p<0.0001 History of renal disease : OR 4.987, p<0.001 History of anemia : OR 4.269, p=0.004 Abnormal ECG : OR 2.814, p=0.005
Frost (2012)	Lit Review	N/A	Multiple	N/A	Preoperative assessment	See discussion of clinical outcomes.	Integration of perioperative information is difficult and is confounded by a lack of computer infrastructure. This results in excessive and expensive testing. Guidelines for perioperative management have been developed but multiple specialties but have not been adequately communicated to practitioners.
Garcia, Pastorio, Nunes, Locks, and Almeida (2014)*	Hospital Universitá riodela Universid ade Federalde Santa Catarina, Brazil	n=1,063	Mutliple	Adult non- cardiac elective surgery patients	Preoperative assessment	41.9% of tests on ASA I patients, 17.72% of tests on ASA II patients, 40% of tests on ASA II patients, and 22.5% of tests on ASA IV patients were not indicated. If these tests had not been ordered, the instution could generate a 13% annual cost savings.	N/A
Huck and Lewandrowski (2014)	Lit Review	N/A	Multiple	N/A	Preoperative testing	Utilization management of preoperative testing will require a team that is both clinical and non- clinical in nature, with a clear champion. Clinical pathologists may have an opportunity to become industry leaders in this area.	N/A
Kaplan, Sheiner, and Boeckmann (1985)	UC San Francisco Medical Center	n=2,000	Multiple	All elective patients	Preoperative testing	60% of routinely ordered tests were unnecessary based on recognizable indications Only 0.22% yielded abnormalities that might influence perioperative care	N/A
Levick, Stern, Meyerhoefer, Levick, and Pucklavage (2013)	Lehigh Valley Health System hospital	n=1	Multiple	All	OR system design	Use of a clinical decision support (CDS) system reduced the use of BNP testing by 21%, for an approximate annual savings of \$92,000.	N/A
Mantha et al. (2005)*	Nizam's Institute of Medical Sciences	n=127	GS	All	Preoperative assessment	N/A	Although the incidence of unindicated preoperative screening tests is still more than 50%, no previously unidentified benefit was found to support this persistence of unwarranted testing.

	TOPIC 3: REDUCED PREOPERATIVE TESTING											
Source	Setting	Scale of Study	Surgical Specialties Covered**	Patient Population Segments	Elements of PSH studied	Cost Savings studied and captured	Clinical Outcomes measured					
Nepomnayshy et	Lahey	n=882	GS	Morbidly	Preoperative	Bariatric morbidly obese patients are screened	N/A					
al. (2013)	Clinic,			obese	testing	for sleep apnea; orthopedic patients are not. 25%						
	Tufuts			patients		of bariatric patients are diagnosed with sleep						
	Medical					apnea as a result of this process. However,						
	School					cardiopulmonary complication rates were not						
						significantly different between the two groups,						
						indicating that the sleep apnea diagnosis was						
D 1 D 1 00		10.011				unnecessary and led to unnecessary costs.						
Parker, Tetzlaff,	The	n=63,941	Multiple	All	Preoperative	Cost per evaluation in clinic: \$24.86	N/A					
Litaker, and Maurer (2000)	Cleveland				assessment	35.6% did not need to see anesthesiologist before						
Wadiel (2000)	Clinic					surgery by using self-assessment						
						Preoperative surgical delay rate decreased						
						49% Patient interview time and dissatisfaction both						
						decreased						
Procop et al.	The	n=12,204	Multiple	All	Preoperative	The use of a clinical decision support system in	N/A					
(2014)	Cleveland	alerts	winnple	All	assessment	test ordering blocked 11,790 duplicate test orders						
(2011)	Clinic	alerts			assessment	over two years, yielding a savings of \$183,586						
	Clinic					with no adverse effects reported.						
<u>C:11-1 (2012)</u>	E dite viel	N/A	Maritinia	A 11	Deviewenting	*	N/A					
Siddel (2013)	Editorial	IN/A	Multiple	All	Perioperative	Preoperative testing conducted more than 3 days before inpatient admission will not be included	N/A					
					care	in DRGs for Medicare patients and will send a						
						red flag to auditors. Medicare is considering						
						moving to a 14-day window in the move to						
						bundled payment. Even if the provider will not						
						be reimbursed for pre-operative care, it is best to						
						submit the charge to Medicare for more accurate						
						calculation of the cost-to-charge ratio.						
Sigmundsson,	Swedish	n=9.051	GS	Patients 50	Preoperative	N/A	Patients with higher preoperative pain were					
Jönsson, and	Spine			years and	assessment		associated with more postoperative self-					
Strömqvist	Register			older			reported back and leg pain, reduced health-					
(2014)*	Ū						related quality of life as measured by SF-36					
							and EuroQol, and lower function as measured					
							by Oswestry Disability Index and self-reported					
							walking distance.					

	TOPIC 3: REDUCED PREOPERATIVE TESTING									
Source	Setting	Scale of Study	Surgical Specialties Covered**	Patient Population Segments	Elements of PSH studied	Cost Savings studied and captured	Clinical Outcomes measured			
Siriussawakul et al. (2013)*	Siriraj Hospital	n=1,496	Multiple	Adults	Preoperative testing	Only 12.1% of patients had preoperative testing compliant with institutional guidelines, leading to excess cost of \$200,000. Overinvestigations were more common for major surgery and younger patients.	N/A			
Sousa Soares et al. (2013)*	Hospital Santo Antonio	n=800	Multiple	Elective non-major surgical patients aged 1-45 and ASA I	Preoperative testing	Only 68 of the 800 patients showed surgical changes in preoperative routine tests, and only 10 of those with abnormal tests had a modified approach . No surgeries were suspended .	N/A			
Tait, Voepel- Lewis, Munro, Gutstein, and Reynolds (1997)	Large university children's hospital	n=127	PDS	Children	Efficiency vs. quality	Parental costs of day-of cancellations:50.0% of fathers and 38.5% of mothers missedwork; 53.3% and 42.1%, respectively, wereunpaid.Round trip miles driven: 158.8Additional testing and appointments requiredin 25.2% of cases	N/A			
S. R. Thilen et al. (2013)	Integrated health care system	n=13,673	Multiple	All	Preoperative testing	22% of all surgical patients had preoperative testing. Ophthamalogic, orthopedic, or urologic surgery patients were more likely to undergo testing than general surgical patients.	N/A			
Vazirani et al. (2012)	Veterans Administr ation Greater Los Angeles Healthcar e System	n=5,223	Multiple	All	Preoperative assessment	N/A	Length of stay decreased for patients with ASA score of 3 or higher (p<0.0001) after addition of hospitalist-run preanesthesia clinic. Reduction in same-day cancellations: 8.5% to 4.9%, p=0.065 Inpatient mortality reduced: 1.27% to 0.36%, p=0.0158 More perioperative beta blockers and stress tests (p<0.0001, p=0.012)			
White et al. (2012)	Editorial	N/A	Multiple	The elderly	Preoperative assessment	N/A	Ambulatory surgery on the elderly has increased and will continue to increase as the population ages. Age has physiologic and pharmacologic implications for medical treatment and may require differing anesthetic techniques and an increased focus on the effects of comorbidities. Best practices for managing common postoperative effects on the elderly are discussed, and future challenges mentioned.			

Appendix D: Literature Charting for Topic 4 – Intraoperative Efforts Leading to Greater Efficiency

**LEGEND: SURGICAL SPECIALTIES								
Abbreviation	Full name							
AS	Abdominal surgery							
CS	Cosmetic surgery							
CRS	Colorectal surgery							
GS	General surgery							
PDS	Pediatric surgery							
TRS	Trauma surgery							
VS	Vascular surgery							
TS	Thoracic surgery							
TTS	Transplant surgery							

	TOPIC 4: INTRAOPERATIVE EFFORTS LEADING TO GREATER EFFICIENCY									
Source	Setting	Scale of Study	Surgical Specialties Covered**	Patient Population Segments	Elements of PSH studied	Cost Savings studied and captured	Clinical Outcomes measured			
Boothe and Finegan (1995)*	Hospital and outpatient clinic	n=64	CRS	All	Efficiency vs. quality	Costs for the same procedure were \$360 less for outpatient surgery compared to inpatient surgery due to decreased nursing costs. Total case flow increased 12.2%.	N/A			
Caplan et al. (1999)*	Prince of Wales Hospital	n=224	CRS	All	OR system design	The cost savings the hospital achieved outweighed increased post-discharge costs, netting a \$200 savings in overall treatment costs.	The reengineered surgical service decreased length of stay (2.2 vs. 3.2 days, p<0.001) and accrued higher patient satisfaction. Patient and caretaker burden decreased following surgery.			
Cima et al. (2011)	Mayo Clinic		Multiple	All	OR system redesign	OR processes were redesigned using Lean and Six Sigma methodologies by creating a value stream map depicting personnel, information processing, and time at each step. The newly designed process yielded -Fewer patient wait times greater than 10 minutes -Improved on-time arrivals and starts -Decreased turnover and operating time -Decreased OR use after 5 P.M . -Improved OR operating margin -Increased OR capacity	N/A			
Cosgrove et al. (2008)*	Newcastle upon Tyne Hospital	n=839	TRS	All	Efficiency & quality	After an audit of emergency surgery efficiencies, findings were disseminated to related providers. A subsequent audit revealed a decrease in delays from 121 to 63 (p=0.001), an increase in the availability of surgeons (59 incidences of no available surgeon to 6, p=0.001), and a decrease in the median waiting time for emergency surgeries from 6.5 hours to 5 hours (p<0.01).	N/A			
Dexter, Maxbauer, Stout, Archbold, and Epstein (2014)	22 academic and nonacade mic hospitals in the US	n=13 weeks of data	Multiple	All	Efficiency & quality	Patients admitted to the hospital prior to the day of surgery make up only 8.1% of the scheduled surgical minutes non-academic surgical population (22.3% for the academic) but account for over half the minutes of surgical cancellations (over 70% for the academic).	N/A			

	TOPIC 4: INTRAOPERATIVE EFFORTS LEADING TO GREATER EFFICIENCY									
Source	Setting	Scale of Study	Surgical Specialties Covered**	Patient Population Segments	Elements of PSH studied	Cost Savings studied and captured	Clinical Outcomes measured			
Fernández, Cronin, Greenberg, and Heitmiller (2014)	Johns Hopkins University Hospital	n=8.620	Multiple	Noncardiac pediatric surgical patients	Blood utilization	8.4% of patients who did not receive a blood transfusion underwent type and screen matching and 5% were crossmatched for red blood ceel products. Over a 13-month period, this cost \$31,815 for the type and screens and \$25,200 for the crossmatches.	N/A			
Huesch (2011)	All state- regulated hospitals in Massachu ssetts	n=12,983	TS	All	Perioperative care	N/A	Increased hospital volume was associated with increased discharge medication use and decreased intraoperative duration . The variability in outcomes attributed to hospital/surgeon combination was small but significant in terms of intraoperative practices , discharge destination , and medication use , indicating an effect of surgeon/hospital 'fit'.			
Jackson et al. (2011)	ACS- NSQIP data from 2005- 2008	n=76,748	Multiple	Non- elective, non-same- day procedures	Intraoperative care	N/A	Odds of complications increased with increasing operating time for most laparoscopic surgeries, indicating that faster operations may improve patient outcomes.			
Jacques, France, Pilla, Lai, and Higgins (2006)	Vanderbilt University Medical Center	n=22 anesthesio logists and n=30 nurses	Multiple	N/A	OR system design	Significantly faster response rate using VOIP technology compared to pagers (4 times faster) 70% of nurses preferred VOIP technology in feedback survey but only 50% use them due to greater reliability of pager technology (97.1% rated pagers more reliable)	N/A			
Lako et al. (2013)	American Hospital, Albania	n=164	TS	CABG patients in a 2-year period	Blood utilization	N/A	Blood transfusion was required in 79.9% of patients. Factors contributing to the likelihood of transfusion include increased age, cardiopulmonary bypass, increased number of grafts, combined heart interventions, and preoperative hematocrit above 35%.			
M. F. Newman et al. (2013)	Editorial	N/A	All	N/A	Preoperative testing	Key point: it is difficult to implement preanesthesia screening guidelines in the real world. One solution is perioperative clinics that do prescreening and coordinate care. This will be especially important as the focus shifts to long-term care and a value-based economy.	N/A			

			TOPIC	4: INTRAOPE	CRATIVE EFFOR	RTS LEADING TO GREATER EFFICIENCY	
Source	Setting	Scale of Study	Surgical Specialties Covered**	Patient Population Segments	Elements of PSH studied	Cost Savings studied and captured	Clinical Outcomes measured
Pollard and Garnerin (1999)	The Veterans Affairs Palo Alto Healthcar e System	n=6,349	Multiple	All	Preoperative assessment	N/A	Outpatient procedure share increased after initiation of preoperative clinic (24.7% to 45.4%, p<0.0001) Complication rates remained stable for outpatient but increased for inpatient procedures (2.31% to 3.5%, p<0.05) Mortality rate unchanged for both
Prager et al. (2005)	Hospitals participati ng in BCBS Michigan plans	n=60 participati ng hospitals	TS, GS, VS	N/A	Efficiency & quality	Improving quality requires the development of new data registries based on rigorous data collection systems, an explicitly platform for quality improvement, and a focus on data confidentiality and trust. The information in these registries is submitted to BCBS as evidence of quality improvement efforts, and BCBS reimburses them using a 'pay-for- participation' scheme, rather than pay-for- performance. This translates quality improvement efforts into reimbursement.	N/A
Raes and Poelaert (2014)*	UZ Brussel, Belgium	n=2	Multiple	All	Preoperative assessment	N/A	Anecdotal evidence for preoperative consultation indicates its ability to correctly postpone surgery to improve patient safety. However, this is hard to prove on a large scale.
Rockall and Demartines (2013)	Editorial	N/A	Multiple	All	ERAS	N/A	Laparascopy is a widely accepted surgical technique and is fundamental the success of many ERAS programs. It may be that laparascopy should be included as a component of ERAS.
Rotondi et al. (1997)	University of Pittsburgh Medical Center (UPMC)	n=1,744	Multiple	All	OR system design	 -Raw and actual OR utilization was less than 50% -High variation in patient wait time occurred in time of admit to time to OR, time from patient ready for OR to entry to OR, and time in the preoperative holding room 	N/A
Sandberg et al. (2005)	Undisclos ed OR	n =4	Multiple	N/A	OR system design	Cases/day: increased number of cases in new OR Nonoperative time: reduced from 67 minutes to 38 minutes (p<0.0001) Operative time: reduced 5 minutes Hospital and anesthesia costs increased (premium of 13%, p<0.005), but increased throughput offset costs (not significantly different)	N/A

	TOPIC 4: INTRAOPERATIVE EFFORTS LEADING TO GREATER EFFICIENCY									
Source	Setting	Scale of Study	Surgical Specialties Covered**	Patient Population Segments	Elements of PSH studied	Cost Savings studied and captured	Clinical Outcomes measured			
Sear (2014)	Editorial	N/A	Multiple	Patients with comorbiditi es	Efficiency & quality	N/A	Whether or not patients should maintain a preoperative prescription drug to manage comorbidities is up for debate, as these drugs may interact with anesthesia. While the debate is not yet resolved, anesthesiologists must continue to be mindful of interactions with prescription drugs and anesthesia.			
Trentman, Mueller, Gray, Pockaj, and Simula (2010)	Hospital, ambulator y surgical center at the Mayo Clinic	n=184	CS	Females	Perioperative care	Preoperative time, OR entry to incision time, and total time were significantly lower in the ambulatory surgical center compared to the hospital (p<0.001 for all).	N/A			
Vashdi et al. (2013)*	Large, public tertiary care health care center	n=362 teams	Multiple	All	Efficiency & quality	N/A	Higher levels of action-team learning are associated with reduced adverse events in low complexity surgeries and shorter operative time , mediated by improved team helping and workload sharing, particularly in complex cases.			
Vetter, Ali, et al. (2012)	UAB Medical Center	n=163,19 5	Multiple	All	Efficiency & quality	N/A	A continuous quality improvement effort to reduce intraoperative corneal injury was undertaken at UAB employing the Seven-Step Problem-Solving Model. This model standardized the method of ocular protection during surgery and required documentation. The program successfully reduced rate of corneal injury in the 45 month follow-up period.			
Williams, DeRiso, Engel, et al. (1998)	Ambulato ry surgery center in University of Pittsburgh Medical Center (UPMC)	n=503	GS	All	OR system design	See discussion of clinical outcomes.	Clinical pathway care reduced pharmacy and materials cost variability (p<0.001), increased turnover time (20.7 to 25.0, p=0.042), improved intraoperative anesthesia and surgical efficiency (p<0.001), improved recovery times (p<0.001), improved unexpected readmission rates (20.1% to 8.1%, p=0.001), and decreased the number of required nursing interventions (2.1 to 1, p<0.001).			

Appendix E: Literature Charting for Topic 5 – Postoperative Care Initiatives

**LEGEND: SURGICAL SPECIALTIES							
Abbreviation	Full name						
AS	Abdominal surgery						
CS	Cosmetic surgery						
CRS	Colorectal surgery						
GS	General surgery						
PDS	Pediatric surgery						
TRS	Trauma surgery						
VS	Vascular surgery						
TS	Thoracic surgery						
TTS	Transplant surgery						

				TOPI	C 5: POSTOPER	ATIVE CARE INITIATIVES	
Source	Setting	Scale of Study	Surgical Specialties Covered**	Patient Population Segments	Elements of PSH studied	Cost Savings studied and captured	Clinical Outcomes measured
Aarts et al. (2012)*	7 hospitals	n=336	CRS	All	ERAS	N/A	Strategies associated with a length of stay of five days or less: Preoperative counseling : OR 1.26, 95% CI 1.15 - 1.37 Use of a laparascopic approach: OR 1.24, 95% CI 1.12 - 1.38 Intraoperative fluid restriction : OR 1.26, 95% CI 1.15 - 1.37 Clear fluids on day of surgery : OR 1.09, 95% CI 1 - 1.2 Early discontinuation of the Foley catheter : OR 1.13, 95% CI 1.01 - 1.27
Campbell Jr et al. (2010)	16 hospitals in Michigan Surgical Quality Collaborati ve (MSQC) and 126 non-MSQC hospitals	n=315,6 99	GS, VS	All	Perioperative care	N/A	Morbidity rates improved in MSQC hospitals over time (10.7% to 9.7%, p=0.002) but did not improve in non-MSQC hospitals over the same time period (12.4% vs. 12.4%, p=0.49). Mortality rates did not improve in either group. Odds of experiencing a complication were lower in the MSQC group (odds ratio 0.898) compared to the non-MSQC group (odds ratio 1.000), p=0.004.
Clark and Spanswick (2013)*	Editorial	N/A	Multiple	All	Anesthesia	N/A	Key takeaways related to perioperative pain management: -Manage expectations and medication of patients presenting with preoperative pain -Manage patients with presurgical opioid dependence before surgery to minimize withdrawals and complications after surgery -Use multimodal analgesia when possible
Favuzza et al. (2013)	University Hospitals Case Medical Center	n=70	CRS	N/A	Postoperative care	The use of TAP (transverse abdominis plane) blocks after laparoscopic surgery shortened hospital stay by 1 day, and patients who received TAP required fewer postoperative narcotics. Both could potentially reduce costs associated with laparoscopic surgery.	N/A
Kastenberg et al. (2012)	University- affiliated tertiary Veterans Affairs Medical Center	N/A	Multiple	All	Preanesthesia assessment	N/A	Unadjusted morbidity rates: decreased with intern home-call rather than hospital visit (12.14% vs. 10.19%, p=0.003) Risk-adjusted morbidity rates: decreased 6.03% (p<0.001) Unadjusted mortality rates: decreased (1.76% to 1.26%, p=0.05)

				TOPI	C 5: POSTOPER	ATIVE CARE INITIATIVES	
Source	Setting	Scale of Study	Surgical Specialties Covered**	Patient Population Segments	Elements of PSH studied	Cost Savings studied and captured	Clinical Outcomes measured
Knott et al. (2012)*	Survey	n=86	Multiple	N/A	ERAS	N/A	Recent developments in ERAS-related anesthesia: Increased use of intraoperative fluid management Cardio-pulmonary exercise testing Key factors in sustaining ERAS success: Clinical champions Dedicated ERAS facilitator
Kolozsvari et al. (2012)*	Clinical teaching unit in a university- based hospital	n = 433	CRS	All	ERAS	N/A	Primary: ($p<0.01$)Secondary: Operation performed by a colorectal surgeon? More likely with ERP ($p = 0.01$)Time to eating solids: ERP patients earlier ($p<0.001$)Time to catheter removal: ERP patients earlier ($p<0.001$)Discharge by planned POD: ERP more often ($p<0.001$)Complication rates: ER pictures: not significantly different ER visits: ERP fewer ($p=0.02$)Readmission rates: not significantly different different
Kuper et al. (2011)*	3 hospitals in the UK	n = 1,357	Multiple	All	Postoperative care quality	N/A	Length of hospital stay: 3.6 day reduction (p=0.002) In-hospital mortality: no significant difference Readmission rates: no significant difference Reoperation rates: 2.5% decrease, p<0.08
Lagasse, Steinberg, Katz, and Saubermann (1995)	Montefiore Medical Center- Albert Einstein College of Medicine	n=116	Multiple	N/A	Anesthesia	N/A	7.8% of errors were human errors ; 92.2% of errors were system errors . This indicates that the primary determinant of care quality is the system, not the individual provider. All errors but one in statistic control, indicating a stable system.
Maessen et al. (2007)*	5 surgical centers	n=425	CRS	All	ERAS	N/A	Surgical centers with previous experience with fast-track surgery were associated with a shorter hospital stay . Fast-track protocol adherence was high before and during the operative phase but low in the postoperative phase.

				TOPI	C 5: POSTOPER	ATIVE CARE INITIATIVES	
Source	Setting	Scale of Study	Surgical Specialties Covered**	Patient Population Segments	Elements of PSH studied	Cost Savings studied and captured	Clinical Outcomes measured
A. B. Newman et al. (2006)	Participants in the Health, Aging, and Body Compositio n Study	n=3,075	Multiple	Adults aged 70 to 79	Prehabilitation	N/A	Inability to complete walking test was associated with: Mobility limitation : 212.6 vs. 79.1 1000- person/years, p<0.001 Mobility disability : 85.2 vs. 28.8 1000- person/years, p<0.001 The longer the test took, the greater the risk for mortality , incident cardiovascular disease , and mobility limitation and disability.
Raphael, Jaeger, and van Vlymen (2011)*	Tertiary care and in community hospitals	n=200	GS	All	ERAS	Lower morphine utilization by fast-track patients (7.5 vs. 35 mg)	Length of stay: reduced in fast-track patients by 69 hours (95% CI 60 to 78) Pain scores lower in fast track patients (4 vs. 40 on postoperative day 2)
Rinehart, Merkel, Schulman, and Hutchens (2012)	Cardiac surgery ICU	n=3	TS	All	Postoperative care	N/A	Predicted mortality for these patients was 14.6% (13.3% one-way CI). However, all three were discharged and no negative side effects of therapeutic hypothermia were noted.
Sammour et al. (2010)*	Manukau Surgical Centre	n=100	CRS	All	ERAS	Does implementing an ERAS system offset implementation costs? Yes; costs were recouped after 15 patients	Use of intravenous fluids: lower in ERAS group (intraoperative -2 vs. 3, p<0.0001; 3 days postoperative - 2 vs. 6.5, p<0.0001) Duration of anesthesia use: lower in ERAS group (2 days vs. 3 days, p<0.0001) Recovery time: ERAS faster in days to full meal, passage of flatus and mobilization (p<0.0001 for all) Length of stay shorter in pre-surgery days, postoperative days, and total days (p<0.0001 for all)
Share et al. (2011)	Michigan regional collaborativ e improveme nt program; BCBS Michigan network	n=44 participat ing hospitals	Multiple	All	Efficiency & quality	Return on investment - reduction in complications and improvement in quality reduces future costs and implementation of cost- saving best practices -2.6% drop in vascular surgery complications translates to \$20M in cost savings on a \$5M investment cost of administering the program. -Reduction in use of problematic vena cava filters translates to savings of \$4 million annually. -Implementation of risk-prediction tools has reduced kidney failure and need for dialysis translated to \$1M annual cost savings.	General and vascular: risk-adjusted 30-day morbidity rates fell from 13.1% to 10.5% from 2005 to 2009 (p<0.001), overall morbidity in Michigan hospitals lower than other hospitals (10.5% to 11.5%, p<0.001) Bariatric: overall complication rates fell from 8.7% to 6.6% from 2007 to 2009, risk- adjusted 30-day mortality rates dropped from 2007 to 2009 (p=0.004); rate of improvement in Michigan exceeded other hospitals (p=0.045) Interventional cardiology: serious complication rate fell from 3.8% to 2.3% (p<0.001) between 1998 and 2002; fewer complications than non-participating hospitals (2.3% vs. 3.2%, p<0.001) Cardiac surgery: composite quality scores

	TOPIC 5: POSTOPERATIVE CARE INITIATIVES										
Source	Setting	Scale of Study	Surgical Specialties Covered**	Patient Population Segments	Elements of PSH studied	Cost Savings studied and captured	Clinical Outcomes measured				
							including risk-adjusted mortality, complications, use of mammary artery as a graft, and other, went from national benchmark (2007-2008) to exceeding national to falling within top tenth percentile				
Toscan et al. (2013)*	Community hospitals	n=1	GS	Elderly hip fracture patients	Postoperative care	N/A	Patient and family caregivers do not feel fully informed about home care after surgery and do not understand the role of the health care providers involved. These parties also report not knowing what to expect or what is expected of them, and feel that hospital rules hinder individualized care.				
Veronovici, Lasiuk, Rempel, and Norris (2013)	Literature review	n=8	TS	All	Preoperative education	N/A	Education of cardiovascular patients preoperatively was associated with decreased self-reported anxiety and depression, increased self-reported health. No studies reported negative results of preoperative education.				
Williams, DeRiso, Engel, et al. (1998)	Ambulator y surgery center in University of Pittsburgh Medical Center (UPMC)	n=503	GS	All	OR system design	See discussion of clinical outcomes.	Clinical pathway care reduced pharmacy and materials cost variability (p<0.001), increased turnover time (20.7 to 25.0, p=0.042), improved intraoperative anesthesia and surgical efficiency (p<0.001), improved recovery times (p<0.001), improved unexpected readmission rates (20.1% to 8.1%, p=0.001), and decreased the number of required nursing interventions (2.1 to 1, p<0.001).				
Williams, DeRiso, Figallo, et al. (1998)	Ambulator y surgery center in University of Pittsburgh Medical Center (UPMC)	n=503	GS	All	OR system design	See discussion of clinical outcomes.	Clinical pathway regional anesthesia vs. general anesthesia led to increased pharmacy and materials costs and increased turnover time (p<0.001 for both), but recovered better (p=0.003), had lower unexpected readmission rates (p=0.002), and required fewer nursing interventions (p<0.001). Postanesthesia care unit bypass was more common in regional anesthesia (p<0.001).				

*Indicates a study conducted outside the United States

Appendix F: Literature Charting for Topic 6 – Reduced Postoperative Complications

* Indicates a study conducted outside the United States

**LEGEND: SURGICAL SPECIALTIES								
Abbreviation	Full name							
AS	Abdominal surgery							
CS	Cosmetic surgery							
CRS	Colorectal surgery							
GS	General surgery							
PDS	Pediatric surgery							
TRS	Trauma surgery							
VS	Vascular surgery							
TS	Thoracic surgery							
TTS	Transplant surgery							

				TOPIC 6: I	REDUCED POST	TOPERATIVE COMPLICATIONS	
Source	Setting	Scale of Study	Surgical Specialties Covered**	Patient Population Segments	Elements of PSH studied	Cost Savings studied and captured	Clinical Outcomes measured
Archibald et al. (2011)	8 community hospitals	n=1,358	CRS	All	ERAS	Hospital costs: decreased by \$1,763 (p=0.02)	Length of stay: decreased by 1.5 compared to 2-year baseline (p<0.0001) Postoperative days: decreased by 1.3 compared to 2-year baseline (p<0.0001) 30-day readmission rate : remained stable (p>0.05) Return to surgery: remained stable (p>0.05)
Batsis et al. (2007)	Tertiary care center	n=466	GS	All	Perioperative care	N/A	Hospitalist care does not have a significant effect on patient 1-year mortality (70.5% vs. 70.6%, p=0.36), despite shortened length of stay and time of surgery under hospitalist care.
Birkmeyer, Gust, Dimick, Birkmeyer, and Skinner (2012)	Multiple		Multiple	All	Efficiency & quality	CABG: Hospitals in highest complication quintile had higher payments than the lowest quintile (\$5,353 higher, p<0.001). Colectomy, \$2,719; AAA repair, \$5,279; hip replacement, \$2,436. Payments higher to lower quality hospitals due to higher payments for index hospitalizations, 30-day readmissions, post- discharge ancillary care, and physician services Mortality not associated with expenditures	N/A
Dasgupta et al. (2009)*	Tertiary care teaching hospital	n=125	Multiple	Noncancer patients 70 years or older	Frailty	N/A	Postoperative complications : increased with frailty (p=0.02); patients with EFS (Edmonton Frail Scale) greater than 7 associated with greater complications - OR 5.02 Length of postoperative stay : increased with frailty (p=0.004) Inability to be discharged home : increased with frailty (p=0.01); patients with EFS (Edmonton Frail Scale) greater than 7 had a 40% chance of not going home, p<0.002
Eskicioglu et al. (2009)*	Multiple	n=198	CRS	All	ERAS	N/A	Length of stay: 3 of 4 studies show reduced length of stay (relative risk = 0.53, 95% CI .12 - 2.38) Reduced complications: 3 of 4 studies show reduced complications (relative risk = 0.61, 95% CI 0.42-0.88)

				TOPIC 6: I	REDUCED POST	TOPERATIVE COMPLICATIONS	
Source	Setting	Scale of Study	Surgical Specialties Covered**	Patient Population Segments	Elements of PSH studied	Cost Savings studied and captured	Clinical Outcomes measured
Fried et al. (2001)	Cardiovasc ular Health Study data	n=5,317	Multiple	65 years and older	Frailty	N/A	Four criteria identified for frailty: Unintentional weight loss (10 lbs. in past year) Self-reported exhaustion Weakness (grip strength) Slow walking speed Low physical activity This definition of frailty was associated with being African American, lower education and income, poor health, and higher chronic morbidity (p<0.05 for all). Frailty was a predictor of falls (p=0.06), disability (p<0.05), hospitalization (p<0.05), and death (p<0.05).
Garonzik-Wang et al. (2012)	Johns Hopkins Hospital	n=183	TTS	All	Frailty	N/A	Delayed organ graft function; Preoperative frailty was independently associated with a 1.94-fold increased risk for delayed graft function (95% CI, 1.13-3.36; P = .02)
Graham et al. (2014)	Geisinger Health System	n=194	GS	Hip fracture patients	Postoperative care	Mean costs for PCMH were lower, but not significantly different for pharmacy and non- pharmacy costs.	Patients whose postoperative care was managed by a patient-centered medical home (PCMH) had: Lower 6-month and 12-month mortality (11% vs. 26%, p<0.01 and 23% vs. 30%, p=0.12, respectively) Similar quality of life scores Improved Harris Hip scores (73 vs. 64, p=0.04)
Holm, Thorborg, Husted, Kehlet, and Bandholm (2013)*	Copenhage n University Hospital	n=30	GS	All	ERAS	N/A	Hip muscle strength and leg press strength of patients was reduced at Day 2 compared to preoperative measures, but had begun to rebound at day 8. Self-reported symptoms also improved at day 8. Changes in hip pain, thigh swelling, and C-Reactive Protein levels were not associated with muscle strength or power loss.
Joh et al. (2008)	University Hospitals Case Medical Center	n=42	CRS	All	ERAS	N/A	Median operative time: 60 minutesMedian blood loss: 17.5 mLMedian hospital stay: 2 days69% of patients discharged by day 2Complication rate: 23.8%30-day readmission rate: 9.5%

				TOPIC 6: 1	REDUCED POST	OPERATIVE COMPLICATIONS	
Source	Setting	Scale of Study	Surgical Specialties Covered**	Patient Population Segments	Elements of PSH studied	Cost Savings studied and captured	Clinical Outcomes measured
S. Khuri (2005)	NSQIP and VA databases	n=105,5 91	Multiple	Veterans	Postoperative care	N/A	Most important indicator of post-operative survival was 30-day postoperative occurrence of 22 NSQIP reported complications Occurrence of one of these events reduced patient survival rates by 69%, independent of preoperative risk
Sw. Kim et al. (2014)*	Seoul National University College of Medicine, South Korea	n=275	Multiple	Elective surgery patients older than 65	Frailty	N/A	10.5% of patients experienced at least one complication 8.7% were discharged to skilled nursing facilities Frailty score predicted mortality risk better than ASA. Higher frailty scores were associated with increased mortality rates and length of stay.
Klidjian, Foster, Kammerling, Cooper, and Karran (1980)*	Department of Surgery, University of Southampt on	n=225	TS	All	Dynamometry	N/A	Hand grip dynometry predicted complications in 48 of 55 cases with complications (87%, p<0.001). Arm muscle circumference and forearm muscle circumference below 85% of the standard also predicted complications (p<0.02 and p<0.01)
Krenk et al. (2014)*	Rigshospita let, Denmark	n=225	GS	Elderly joint replacemen t surgical patients	Postoperative care	N/A	The incidence of postoperative cognitive dysfunction (POCD) was 9.1% after 1-2 weeks and 8.0% at 3 months. Patients with and without POCD did not differ in terms of pain, opioid use, sleep quality, or C-reactive protein response, but did have a higher score on the Mini Mental State Examination.
Krupka et al. (2012)	University of Michigan Hospital	NSQIP data and hospital accounti ng data	Multiple	N/A	Efficiency & quality	Calculated cost savings for each complication avoided: \$17,000 Calculated change in reimbursement revenue for each complication avoided: \$13,000 If there is not another patient to fill the hospital bed, hospital incurs a loss of (\$4,000). Thus, to incentivize hospitals not at capacity to avoid complications, these costs should be shared by payors.	N/A
Kristoffer Lassen et al. (2012)*	Standard database & personal data		GS	N/A	ERAS	N/A	See Kahokehr et al. (2009) for similar paper for colorectal surgery. Evidence and recommendations on ERAS best practices for pancreaticoduodenoctomy.

	TOPIC 6: REDUCED POSTOPERATIVE COMPLICATIONS										
Source	Setting	Scale of Study	Surgical Specialties Covered**	Patient Population Segments	Elements of PSH studied	Cost Savings studied and captured	Clinical Outcomes measured				
Lloyd et al. (2010)*	2 hospitals in Dublin	n=117	CRS	All	ERAS	N/A	Laparascopic: RAPID protocol group had significantly shorter median stay (6 vs 9.5 days, p=0.01), tolerance of full diet (2 vs. 3 days, p=0.002), and reduction in pain score or days 1 and 3 (p=0.004, p<0.0001). Open resections: RAPID protocol group had significantly shorter stay (7.5 vs. 12 days, p=0.04) and pain score on day 3 (p=0.006).				
Miller et al. (2014)	Duke University Medical Center	n=241	CRS	All	ERAS	N/A	Median length of stay was lower in the ERAS group than in traditional care and rates of UTI and readmission were lower.				
Mohn, Bernardshaw, Ristesund, Hovde Hansen, and Rokke (2009)*	Haukeland University Hospital and Haugesund Hospital	n=94	CRS	All	ERAS	N/A	Length of stay: 78% discharged within 5 days in ERAS patients, 5% with traditional program Complication rate: ERAS - 31% Readmission rate: ERAS - 15% Time to resume daily activities: ERAS - 57% within one week of discharge Time to resume leisure activities: ERAS - 65% within thirty days of discharge				
Mythen et al. (2012)*	Best practice report	N/A	N/A	N/A	ERAS	N/A	Provides principles for each phase of surgery related to: -General principles of enhanced recovery fluid management and recommendations of the enhanced recovery partnership -Aims of ER fluid management (by the end of surgery) -Individualized goal directed fluid therapy				
Nascimbeni, Di Fabio, Di Betta, and Salerni (2009)*	Brescia University Hospital	n=985	CRS	N/A	Postoperative care	N/A	 Rate of cancer patients undergoing surgery increased significantly between 1975-1984 and 1995-2004. Postoperative mortality: 3.9% in 1975-1984, 0.6% in 1995-2004 (p=0.001). Most significant change in 74+ group. 5-year survival: worse for 74+ group than younger group in both decades (p<0.001 and p=0.01, respectively). Cancer-related survivals: worse for 74+ group than younger group in both decades (p<0.0001 and p=0.04, respectively). 				
Pasquali et al. (2012)	14 surgical centers	n=546	PDS	Infants	Perioperative care	N/A	All preoperative care variables varied across the 14 sites (fetal diagnosis, preoperative intubation, enteral feeding). Some perioperative and operative variables varied, including total				

	TOPIC 6: REDUCED POSTOPERATIVE COMPLICATIONS										
Source	Setting	Scale of Study	Surgical Specialties Covered**	Patient Population Segments	Elements of PSH studied	Cost Savings studied and captured	Clinical Outcomes measured				
							support time and intraoperative medication use . Postoperative variables also varied, including median ICU stay , type of feeding at discharge , and a home monitoring program .				
Qaseem et al. (2006)	Editorial	N/A	Multiple	N/A	Efficiency & quality	N/A	Patient-related factors (i.e. chronic disease, age above 60, ASA class II or higher) increase risk of postoperative pulmonary complications . Certain surgeries carry larger risk of postoperative pulmonary complications (prolonged, emergency, abdominal, aortic aneurysm, etc.) General anesthesia also brings a larger risk of postoperative pulmonary complications. Risk reduction strategies (spirometry, deep breathing exercises) reduce risk of postoperative pulmonary complications.				
Ramirez et al. (2011)*	Hospital	n=300	CRS	All	ERAS	N/A	Compliance to ERAS protocol: overall 65% but varied across components, ranging from 99% providing perioperative information to 40.6% taking early fluids by mouth. Average length of stay 6 days; 3% required readmission ; most complications were surgical (24%)				
Raphael et al. (2011)*	Tertiary care and in community hospitals	n=200	GS	All	ERAS	Lower morphine utilization by fast-track patients (7.5 vs. 35 mg)	Length of stay: reduced in fast-track patients by 69 hours (95% CI 60 to 78) Pain scores lower in fast track patients (4 vs. 40 on postoperative day 2)				
Ren et al. (2012)*	University hospital	n=597	CRS	N/A	ERAS	Postoperative expense lower for ERAS group (p<0.001)	Nutritional status: improved in ERAS group compared to control group (Insulin resistance index lower, p<0.001) Reduced postoperative stress in ERAS group Accelerated gastrointestinal function in ERAS group Postoperative length of stay lower in ERAS group (p<0.001) No significant difference in complications				
Robinson, Wu, Stiegmann, and Moss (2011)	Denver Veterans Affairs Medical Center	n = 60	CRS	65 and older	Frailty	Does a preoperative assessment of frailty predict healthcare and hospitalization costs? Findings: as frailty advanced, so did hospital costs and costs from discharge to 6 months (p <0.001). Higher frailty associated with discharge to an institution (p <.001) and readmission (p <0.044)	N/A				

				TOPIC 6: 1	REDUCED POST	OPERATIVE COMPLICATIONS	
Source	Setting	Scale of Study	Surgical Specialties Covered**	Patient Population Segments	Elements of PSH studied	Cost Savings studied and captured	Clinical Outcomes measured
Teeuwen et al. (2010)*	Outpatient clinic and a surgical center	n=62 n=246	CRS	All	ERAS	N/A	Primary:Mortality: no significant difference (p=0.55)Morbidity: lower in ERAS group (14.8% to 33.6%, p<0.01)
Williams, DeRiso, Engel, et al. (1998)	Ambulator y surgery center in University of Pittsburgh Medical Center (UPMC)	n=503	GS	All	OR system design	See discussion of clinical outcomes.	Clinical pathway care reduced pharmacy and materials cost variability (p<0.001), increased turnover time (20.7 to 25.0, p=0.042), improved intraoperative anesthesia and surgical efficiency (p<0.001), improved recovery times (p<0.001), improved unexpected readmission rates (20.1% to 8.1%, p=0.001), and decreased the number of required nursing interventions (2.1 to 1, p<0.001).
Williams, DeRiso, Figallo, et al. (1998)	Ambulator y surgery center in University of Pittsburgh Medical Center (UPMC)	n=503	GS	All	OR system design	See discussion of clinical outcomes.	Clinical pathway regional anesthesia, compared to general anesthesia, led to increased pharmacy and materials costs and increased turnover time (p<0.001 for both), but recovered better (p=0.003), had lower unexpected readmission rates (p=0.002), and required fewer nursing interventions (p<0.001). Postanesthesia care unit bypass was more common in clinical pathway regional anesthesia (p<0.001).
J. M. Young et al. (2013)*	Public and private hospitals	n=775	CRS	Cancer patients	Postoperative care	N/A	Some patients were assigned to the CONNECT intervention in which nurses followed up with patients by phone at several intervals after discharge. CONNECT patients demonstrated no significant differences from non-CONNECT patient in terms of unmet care needs , ED presentations , unplanned readmissions , experience of care coordination , or distress .

*Indicates a study conducted outside the United States

Appendix G: Literature Charting for Topic 7 – Care Coordination and Transition Planning

* Indicates a study conducted outside the United States

**LEGEND: SURGICAL SPECIALTIES								
Abbreviation	Full name							
AS	Abdominal surgery							
CS	Cosmetic surgery							
CRS	Colorectal surgery							
GS	General surgery							
PDS	Pediatric surgery							
TRS	Trauma surgery							
VS	Vascular surgery							
TS	Thoracic surgery							
TTS	Transplant surgery							

			Т	OPIC 7: CAR	E COORDINAT	ION AND TRANSITION PLANNING	
Source	Setting	Scale of Study	Surgical Specialties Covered**	Patient Population Segments	Elements of PSH studied	Cost Savings studied and captured	Clinical Outcomes measured
Aarts et al. (2012)*	7 hospitals in Canada	n=336	CRS	All	ERAS	N/A	Strategies associated with a length of stay of five days or less: Preoperative counseling : OR 1.26, 95% CI 1.15 - 1.37 Use of a laparascopic approach : OR 1.24, 95% CI 1.12 - 1.38 Intraoperative fluid restriction : OR 1.26, 95% CI 1.15 - 1.37 Clear fluids on day of surgery : OR 1.09, 95% CI 1 - 1.2 Early discontinuation of the Foley catheter : OR 1.13, 95% CI 1.01 - 1.27
Aboulian et al. (2010)	County Hospital	n=54	CRS	All	ERAS	N/A	ERAS patients saw: Decrease in intravenous fluids during surgery (p=0.001) and over next 3 days (p=0.0017) Decrease in hospital stay : 4 days vs. 6 days, p=0.003 No difference in complication or readmission rates
Anthony and Hudson-Barr (1998)	Healthcare agencies in Cleveland, Ohio	n=28	Multiple	All	Discharge planning	N/A	Factors affecting effective discharge: -Communication (or lack) between RN and physician -Use of multidisciplinary teams to facilitate communication -Short staffing resulting in inadequate teaching time and poor continuity -Inability of families to meet post-discharge needs -Limited LOS reduces patient readiness for discharge -Tools for discharge (i.e. care paths, clarity of discharge criteria) helpful
Archibald et al. (2011)	8 community hospitals in Utah	n=1,358	CRS	All	ERAS	Hospital costs: decreased by \$1,763 (p=0.02)	Length of stay: decreased by 1.5 compared to 2-year baseline (p<0.0001) Postoperative days: decreased by 1.3 compared to 2-year baseline (p<0.0001) 30-day readmission rate: remained stable (p>0.05) Return to surgery: remained stable (p>0.05)

			Т	OPIC 7: CAR	E COORDINAT	ON AND TRANSITION PLANNING	
Source	Setting	Scale of Study	Surgical Specialties Covered**	Patient Population Segments	Elements of PSH studied	Cost Savings studied and captured	Clinical Outcomes measured
Bardram et al. (1995)*	University hospital	n=8	Colorectal	Elderly, high-risk	ERAS	N/A	 Early mobilization in fast-track group due to effective pain relief LOS: reduced to 2 days without nausea, vomiting, or ilieus Postoperative fatigue reduced Functional activity impairment avoided
Ben-Ishay, Gertsenzon, Mashiach, Kluger, and Chermesh (2011)*	Rambam Medical Center, a tertiary 970-bed hospital	n=100	Multiple	All	Postoperative care quality	N/A	Malnutrition risk: 33% of patients were screened to be at a high malnutrition risk using MUST tool Length of stay: significantly longer for patients without malnutrition risk (18.8 days vs. 5.3 days, p=0.003) Mortality: higher in malnutrition risk group in hospital (9.4% to 0%, p=0.017), after 6 months (18.8% to 1.6%, p=0.006), and after 1 year (21.9% to 1.6%, p=0.002)
Birkmeyer et al. (2012)	All Medicare claims files for surgical specialties covered between 2005 and 2007		Multiple	All	Efficiency & quality	CABG: Hospitals in highest complication quintile had higher payments than the lowest quintile (\$5,353 higher, p<0.001). Colectomy, \$2,719; AAA repair, \$5,279; hip replacement, \$2,436. Payments higher to lower quality hospitals due to higher payments for index hospitalizations, 30-day readmissions, post- discharge ancillary care, and physician services Mortality not associated with expenditures	N/A
Campbell Jr et al. (2010)	16 hospitals in the Michigan Surgical Quality Collaborati ve (MSQC), 126 non- MSQC hospitals	n=315,6 99	GS, VS	All	Efficiency & quality	N/A	Morbidity rates improved in MSQC hospitals over time (10.7% to 9.7%, p=0.002) but did not improve in non-MSQC hospitals over the same time period (12.4% vs 12.4%, p=0.49). Mortality rates did not improve in either group. Odds of experiencing a complication were lower in the MSQC group (odds ratio 0.898) compared to the non-MSQC group (odds ratio 1.000), p=0.004.
Clark and Spanswick (2013)*	Editorial	N/A	Multiple	All	Anesthesia	N/A	Key takeaways related to perioperative pain management: -Manage expectations and medication of patients presenting with preoperative pain -Manage patients with presurgical opioid dependence before surgery to minimize

			Т	OPIC 7: CAR	E COORDINAT	ION AND TRANSITION PLANNING	
Source	Setting	Scale of Study	Surgical Specialties Covered**	Patient Population Segments	Elements of PSH studied	Cost Savings studied and captured	Clinical Outcomes measured
							withdrawals and complications after surgery -Use multimodal analgesia when possible
Cook et al. (2013)	Mayo Clinic	n=149	TS	Over 50	OR system design	N/A	Patients were able to effectively self-report and interact with a customized care plan using an e-health platform. Self-reported data were accurate predictors of length of stay and likelihood of discharge home.
Cornell et al. (2007)	3 New York hospitals	n=176	Hip fracture	65 and older	Post-discharge recovery	N/A	Role-physical domain of SF-36: significant improvement in group receiving peer counseling, strength training, and motivational video intervention compared to normal intervention (p=0.03)
Delaney et al. (2001)	Cleveland Clinic Foundation	n=60	CRS	All	ERAS	N/A	LOS: shorter for 'fast-track' patients, even those with comorbidities Readmission rate : 4 of the fast-track patients (4.7%) were readmitted for reasons unrelated to the fast-track process; as such, the fast-track process did not show higher readmission rates than the non-fast-track process
Ellison et al. (2004)	Brady Urological Institute, Baltimore	n=85	Urologic	All	Technology	N/A	Telerounding treatment: patient ratings of examination thoroughness, quality of discussion, postoperative care coordination, and physician availability improved Robotic telerounding treatment: patient ratings of physician availability improved
Eskicioglu et al. (2009)*	Multiple	n=198	CRS	All	ERAS	N/A	Length of stay: 3 of 4 studies show reduced length of stay (relative risk = 0.53, 95% CI .12 - 2.38) Reduced complications: 3 of 4 studies show reduced complications (relative risk = 0.61, 95% CI 0.42-0.88)
Hardt et al. (2013)*	Academic medical center	n=103	CRS	All	ERAS	N/A	This study compared clinical pathway outcomes to outcomes for patients in a previously existing enhanced postoperative recovery program. The clinical pathway patients resumed regular diet sooner, passed stool sooner, and reduced LOS . However, there was a higher need for revisional surgery in the clinical pathway group.

			Т	OPIC 7: CAR	E COORDINAT	ION AND TRANSITION PLANNING	
Source	Setting	Scale of Study	Surgical Specialties Covered**	Patient Population Segments	Elements of PSH studied	Cost Savings studied and captured	Clinical Outcomes measured
Holland et al. (2014)	Mayo Clinic	n=197	PDS	All English- speaking pediatric surgical patients	Discharge planning	N/A	A decision support tool was designed to identify patients in greatest need of discharge planning. 62% of the patients identified through this system had substantial post-acute care needs, whereas just 3% of the population not identified through this system had substantial post-acute care needs .
Huddleston et al. (2004)	Rochester Medical Hospital	n=526	GS	Elderly	Perioperative care	Total costs did not vary between hospitalist and non-hospitalist groups	Complication rates: lower in hospitalist-run group (61.6% vs. 49.8%) Unadjusted length of stay: no difference Adjusted length of stay: shorter in hospitalist-run group (5.1 vs. 5.6 days)
Huesch (2011)	All state- regulated hospitals in Massachus etts	n=12,98 3	TS	All	Efficiency & quality	N/A	Increased hospital volume was associated with increased discharge medication use and decreased intraoperative duration . The variability in outcomes attributed to hospital/surgeon combination was small but significant in terms of intraoperative practices, discharge destination , and medication use , indicating an effect of surgeon/hospital 'fit'.
H. Kehlet and Dahl (2003)*	Lit Review	N/A	Multiple	All	ERAS	N/A	Discusses pertinent literature on perioperative care, including preoperative assessment , effects of general anesthetics, prevention of surgical stress, anesthetic techniques for prevention and treatment of pain, fluid management, and the role of surgeons and anesthesiologists in care coordination
Kariv et al. (2007)	Cleveland hospital	n=97	Colorectal	All	ERAS	Median direct costs per patient within 30 days were lower with fast-track surgery (\$5,692 vs. \$6,672, p=0.001)	Fast-track patients had: Shorter LOS: 5 vs. 5.9 days, p=0.012 Readmission rates: no significant difference Recurrent operation rates: no significant difference Complication rates: no significant difference Early discharge associated with fast-track group

			Т	OPIC 7: CAR	E COORDINAT	ION AND TRANSITION PLANNING	
Source	Setting	Scale of Study	Surgical Specialties Covered**	Patient Population Segments	Elements of PSH studied	Cost Savings studied and captured	Clinical Outcomes measured
Kolozsvari et al. (2012)*	Clinical teaching unit in a university- based institution	n=433	CRS	All	ERAS	N/A	Primary: Length of stay: 4 for both groups ($p<0.01$)Secondary:Operation performed by a colorectal surgeon? More likely with ERP ($p = 0.01$)Time to eating solids: ERP patients earlier ($p<0.001$)Time to catheter removal: ERP patients earlier ($p<0.001$)Discharge by planned POD: ERP more often ($p<0.001$)Complication rates: not significantly differentER visits: ERP fewer ($p=0.02$)Readmission rates: not significantly different
Kristoffer Lassen et al. (2012)*	Standard database & personal data		GS	N/A	ERAS	N/A	See Kahokehr et al. (2009) for similar paper for colorectal surgery. Evidence and recommendations on ERAS best practices for pancreaticoduodenoctomy.
Leandro-Merhi, de Aquino, and Sales Chagas (2011)*	Hospital e Maternidad e Celso Pierro, , Sao Paulo, Brazil	n=350	GS, TS	All	Efficiency & quality	N/A	Disease was the most prevalent factor in determining length of stay (p<0.0001), with neoplasm and vascular surgery patients having the longest stays. Well-nourished patients more likely to be discharged sooner than malnourished patients (RR 3.3, p=0.0002)
Lemmens, Van Zelm, van Hillegersberg, and Kerkkamp (2009)*	Lit review	n=13	Colorectal	All	Clinical pathways	N/A	Most common clinical pathway interventions to improve postoperative outcomes: -Nutritional management -Pain management -Mobilization -Education -Discharge planning
Macario, Vitez, Dunn, and McDonald (1995)	Stanford University Medical Center	n=715	Multiple	Not disclosed	Perioperative care	49% of total hospital costs are variable , 57% are direct to patient costs, 33% relate to the OR, and 31% relate to the inpatient ward . Intraoperative anesthesia costs are 5.6% of the total hospital costs. Overall cost-to-charge ratio was 0.42 across all surgical operations but varied threefold among departments. Patient anesthesia charges overestimated resources used by 48%, but patient ward charges underestimated resource use by 23%.	N/A

			Т	OPIC 7: CAR	E COORDINAT	ION AND TRANSITION PLANNING	
Source	Setting	Scale of Study	Surgical Specialties Covered**	Patient Population Segments	Elements of PSH studied	Cost Savings studied and captured	Clinical Outcomes measured
Mackey (2012)	Editorial	N/A	Multiple	N/A	Efficiency & quality	N/A	Integrated databases are necessary to eliminate negative variations in clinical practices nationwide. Anesthesiologists are in a unique position as perioperative specialists to help facilitate this information exchange.
Maessen et al. (2007)*	5 surgical centers	n=425	CRS	All	ERAS	N/A	Surgical centers with previous experience with fast-track surgery were associated with a shorter hospital stay. Fast-track protocol adherence was high before and during the operative phase but low in the postoperative phase.
Mcmurray et al. (2007)*	3 hospitals	n=13	GS	All	Discharge planning	N/A	Patients cited the following issues with discharge protocol : -'One-size-fits-all' approach to providing information -Inconsistent advice from health professionals -Lack of predischarge assessment of home & work conditions -Need for follow-up patient and carer needs assessment
Miguel and Sagardoy (2014)*	Miguel Servet Hospital, Spain	n=100	GS	All	Postoperative care	N/A	Preoperative and postoperative anxiety were less in the group receiving an anesthesia information leaflet (p=0.023). Preoperative anxiety was a predictor of postoperative pain (p=0.001).
Mohn et al. (2009)*	2 hospitals	n=94	CRS	All	ERAS	N/A	Length of stay: 78% discharged within 5 days in ERAS patients, 5% with traditional program Complication rate: ERAS - 31% Readmission rate: ERAS - 15% Time to resume daily activities: ERAS - 57% within one week of discharge Time to resume leisure activities: ERAS - 65% within thirty days of discharge
Mythen et al. (2012)*	Best practice report	N/A	All	N/A	ERAS	N/A	Provides principles for each phase of surgery related to: -General principles of enhanced recovery fluid management and recommendations of the enhanced recovery partnership -Aims of ER fluid management (by the end of surgery) -Individualized goal directed fluid therapy

			I	COPIC 7: CAR	E COORDINAT	ION AND TRANSITION PLANNING	
Source	Setting	Scale of Study	Surgical Specialties Covered**	Patient Population Segments	Elements of PSH studied	Cost Savings studied and captured	Clinical Outcomes measured
Nanavati and Prabhakar (2013)*	Public sector municipal hospital	n=60	CRS	Adults without significant comorbiditi es	ERAS	N/A	Fast track patients required less analgesia , had earlier ambulation , earlier return of motility , and had reduced LOS .
Pattakos et al. (2012)	Cleveland Clinic	n=4,031	TS	All	Postoperative care	Nonhome discharge can be predicted using preoperative testing. Using this preoperative data to predict discharge could improve transition planning and shorten hospital stay.	N/A
Prager et al. (2005)	Hospitals participatin g in BCBS Michigan plans	n=60 participat ing hospitals	TS, VS, GS	N/A	Efficiency & quality	Improving quality requires the development of new data registries based on rigorous data collection systems, an explicitly platform for quality improvement, and a focus on data confidentiality and trust. The information in these registries is submitted to BCBS as evidence of quality improvement efforts, and BCBS reimburses them using a 'pay-for- participation' scheme, rather than pay-for- performance. This translates quality improvement efforts into reimbursement.	N/A
Qaseem et al. (2006)	Editorial	N/A	Multiple	N/A	Efficiency & quality	N/A	Patient-related factors (i.e. chronic disease, age above 60, ASA class II or higher) increase risk of postoperative pulmonary complications . Certain surgeries carry larger risk of postoperative pulmonary complications (prolonged, emergency, abdominal, aortic aneurysm, etc.) General anesthesia also brings a larger risk of postoperative pulmonary complications. Risk reduction strategies (spirometry, deep breathing exercises) reduce risk of postoperative pulmonary complications.
Ramirez et al. (2011)*	Hospital	n=300	CRS	All	ERAS	N/A	Compliance to ERAS protocol: overall 65% but varied across components, ranging from 99% providing perioperative information to 40.6% taking early fluids by mouth. Average length of stay 6 days; 3% required readmission; most complications were surgical (24%)
Raphael et al. (2011)*	Tertiary care and in community hospitals	n=200	GS	All	ERAS	Lower morphine utilization by fast-track patients (7.5 vs. 35 mg)	Length of stay: reduced in fast-track patients by 69 hours (95% CI 60 to 78) Pain scores lower in fast track patients (4 vs. 40 on postoperative day 2)

			Т	COPIC 7: CAR	RE COORDINAT	ION AND TRANSITION PLANNING	
Source	Setting	Scale of Study	Surgical Specialties Covered**	Patient Population Segments	Elements of PSH studied	Cost Savings studied and captured	Clinical Outcomes measured
Ren et al. (2012)*	University hospital	n=597	CRS	N/A	ERAS	Postoperative expense lower for ERAS group (p<0.001)	Nutritional status: improved in ERAS group compared to control group (Insulin resistance index lower, p<0.001)Reduced postoperative stress in ERAS group Accelerated gastrointestinal function in ERAS groupPostoperative length of stay lower in ERAS group (p<0.001)
Roulin et al. (2013)*	University Hospital of Lausanne	n=100	CRS	All	ERAS	Mean savings per ERAS patient was €1,561.	ERAS reduced hospital stay without increasing readmissions . ERAS patients also had a lower rate of severe complications , but no change in morbidity .
Ryan et al. (2004)*	Royal North Shore Hospital	n=1,601	Multiple	All	Perioperative care	N/A	23-hour discharge center discharge compliance: 86% Only 3% needed future unexpected medical care
Sammour et al. (2010)*	Manukau Surgical Centre	n=100	CRS	All	ERAS	Does implementing an ERAS system offset implementation costs? Yes; costs were recouped after 15 patients	Use of intravenous fluids: lower in ERAS group (intraoperative -2 supplements vs. 3, p<0.0001; 3 days postoperative - 2 supplements vs. 6.5, p<0.0001) Duration of anesthesia use: lower in ERAS group (2 days vs. 3 days, p<0.0001) Recovery time: ERAS faster in days to full meal, passage of flatus and mobilization (p<0.0001 for all) Length of stay shorter in pre-surgery admitted days, postoperative days, and total days (p<0.0001 for all)
Sandberg et al. (2005))	One OR	n = 4	Multiple	N/A	Perioperative care	Cases/day: higher number of cases in new OR Nonoperative time: reduced from 67 minutes to 38 minutes (p<0.0001) Operative time: reduced 5 minutes Hospital and anesthesia costs increased (premium of 13%, p<0.005), but increased throughput offset costs (not significantly different)	N/A
Schaefer, Anderson, and Simms (1990)	Michigan hospital	n=45	Thoracic and abdominal	Elderly	Post-discharge recovery	N/A	Significant difference in patient-assessed discharge readiness pre-discharge and post- discharge in the following areas: Functional ability : patients assessed better ability to perform functional tasks at home post-discharge

			Т	OPIC 7: CAR	E COORDINAT	ION AND TRANSITION PLANNING	
Source	Setting	Scale of Study	Surgical Specialties Covered**	Patient Population Segments	Elements of PSH studied	Cost Savings studied and captured	Clinical Outcomes measured
Sharareh, Le, Hoang, and Schwarzkopf (2014)	UC Irvine Hospital	n=100	GS	All	Post-discharge recovery	N/A	Patients who were discharged to skilled nursing facilities (SNFs) rather than home had slower preoperative Get Up and Go and EQ-5D scores and higher ASA scores, length of stay, postoperative pain, as well as decreased physical therapy achievements. This can help guide discharge planning.
Shyu et al. (2012)*	Medical center in Taiwan	n=299	Hip fracture	Elderly	Clinical pathways	N/A	Subacute care (geriatric consultation, continuous rehabiligation, and discharge planning): improved more than usual care in physical function , role physical , vitality , and social function components of the SF-36 measure Comprehensive care (subacute care plus health maintenance interventions): improved more than usual care in physical function , role physical, general health , and mental health components of the SF-36 measure
Taicher, Alam, Berman, and Epstein (2011)	Thomas Jefferson University Hospital, Philadelphi a	n = 25	GS	All	OR system design	Use of computers to convey surgical information to recipients not familiar with anesthesiologists' native language. 83% of subjects agreed that native language communication made them more relaxed (LCL = 73%) and 96% (LCL = 83%) would refer friends based on availability of this device.	N/A
Teeuwen et al. (2010)*	Outpatient clinic and a surgical center	n=146	CRS	All	ERAS	N/A	Primary: Mortality: no significant difference (p=0.55)Morbidity: lower in ERAS group (14.8% to 33.6%, p<0.01)

			Т	OPIC 7: CAR	E COORDINAT	ION AND TRANSITION PLANNING	
Source	Setting	Scale of Study	Surgical Specialties Covered**	Patient Population Segments	Elements of PSH studied	Cost Savings studied and captured	Clinical Outcomes measured
Theobald and McMurray (2004)*	Tertiary care hospital in Brisbane	n=30	Coronary	All	Discharge planning	Financial consequences of surgery a major burden to patients	After surgical discharge, patients experienced; -pain -heightened body awareness -lifestyle adjustments that would be helped by support services such as telephone support or patient networks -need for more accurate and informative discharge planning
Toscan et al. (2013)*	Community hospitals	n=1	GS	Elderly hip fracture patients	Postoperative care	N/A	Patient and family caregivers do not feel fully informed about home care after surgery and do not understand the role of the health care providers involved. These parties also report not knowing what to expect or what is expected of them, and feel that hospital rules hinder individualized care.
Veronovici et al. (2013)*	Literature review	n=8	TS	All	Preoperative education	N/A	Education of cardiovascular patients preoperatively was associated with decreased self-reported anxiety and depression, increased self-reported health. No studies reported negative results of preoperative education.
Vetter, Downing, et al. (2014)	UAB Hospital	n=1,052	Multiple	All	Preoperative education	N/A	The use of a standardized, simplified, multicolor medication instruction sheet increased postoperative medication compliance compared to previous nonstandardized education.
Walters et al. (2014)	University of Virginia Hospital	n=1,646	TS	Patients with LOS greater than 1 day	Post-discharge receovery	N/A	Age, lower preoperative albumin, and increased preoperative Zubrod score predicated discharge to extended care facilities.
Wennström et al. (2010)*	Hospital	n=32	Colorectal	Elderly	Post-discharge recovery	N/A	LOS: 6 days Readmission rate: 10% Serious complications: none reported Pain not reported as troublesome symptom Extreme fatigue, bowel disturbances, nausea, and anxiety reported as most impactful post- discharge effects
Williams, DeRiso, Engel, et al. (1998)	Ambulator y surgery center in University of Pittsburgh Medical Center (UPMC)	n=503	GS	All	OR system design	See discussion of clinical outcomes.	Clinical pathway care reduced pharmacy and materials cost variability (p<0.001), increased turnover time (20.7 to 25.0, p=0.042), improved intraoperative anesthesia and surgical efficiency (p<0.001), recovery times (p<0.001), and unexpected readmission rates (20.1% to 8.1%, p=0.001), and decreased the number of nursing interventions (2.1 to 1, p<0.001).

			Т	OPIC 7: CAR	E COORDINATI	ION AND TRANSITION PLANNING	
Source	Setting	Scale of Study	Surgical Specialties Covered**	Patient Population Segments	Elements of PSH studied	Cost Savings studied and captured	Clinical Outcomes measured
Williams, DeRiso, Figallo, et al. (1998)	Ambulator y surgery center in University of Pittsburgh Medical Center (UPMC)	n=503	GS	All	OR system design	See discussion of clinical outcomes.	Clinical pathway regional anesthesia, compared to general anesthesia, led to increased pharmacy and materials costs and increased turnover time (p<0.001 for both), but recovered better (p=0.003), had lower unexpected readmission rates (p=0.002), and required fewer nursing interventions (p<0.001). Postanesthesia care unit bypass was more common in clinical pathway regional anesthesia (p<0.001).
J. M. Young et al. (2013)*	Public and private hospitals	n=775	CRS	Cancer patients	Postoperative care	N/A	Some patients were assigned to the CONNECT intervention in which nurses followed up with patients by phone at several intervals after discharge. CONNECT patients demonstrated no significant differences from non-CONNECT patient in terms of unmet care needs, ED presentations, unplanned readmissions, experience of care coordination, or distress.
J. Young, Masya, Solomon, and Shepherd (2014)*	Colorectal cancer experts	n=20	CRS	Cancer patients	Perioperative care	N/A	Core measures that are valid indicators of colorectal cancer care coordination relate to appropriateness of treatment, adherence to clinical pathway, communication, multidisciplinary care, and care planning.

*Indicates a study conducted outside the United States