ASA PHYSICAL STATUS CLASSIFICATION SYSTEM

Last approved by the ASA House of Delegates on October 15, 2014

Table 1: Current definitions (NO CHANGE) and Examples (NEW)

<table>
<thead>
<tr>
<th>ASA PS Classification</th>
<th>Definition</th>
<th>Examples, including, but not limited to:</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASA I</td>
<td>A normal healthy patient</td>
<td>Healthy, non-smoking, no or minimal alcohol use</td>
</tr>
<tr>
<td>ASA II</td>
<td>A patient with mild systemic disease</td>
<td>Mild diseases only without substantive functional limitations. Examples include: current smoker, social alcohol drinker, pregnancy, obesity (30<BMI<40), well-controlled DM/HTN, mild lung disease</td>
</tr>
<tr>
<td>ASA III</td>
<td>A patient with severe systemic disease</td>
<td>Substantive functional limitations; One or more moderate to severe diseases. Examples include: poorly controlled DM or HTN, COPD, morbid obesity (BMI ≥40), active hepatitis, alcohol dependence or abuse, implanted pacemaker, moderate reduction of ejection fraction, ESRD undergoing regularly scheduled dialysis, premature infant PCA < 60 weeks, history (>3 months) of MI, CVA, TIA, or CAD/stents.</td>
</tr>
<tr>
<td>ASA IV</td>
<td>A patient with severe systemic disease that is a constant threat to life</td>
<td>Examples include: recent (<3 months) MI, CVA, TIA, or CAD/stents, ongoing cardiac ischemia or severe valve dysfunction, severe reduction of ejection fraction, sepsis, DIC, ARD or ESRD not undergoing regularly scheduled dialysis</td>
</tr>
<tr>
<td>ASA V</td>
<td>A moribund patient who is not expected to survive without the operation</td>
<td>Examples include: ruptured abdominal/thoracic aneurysm, massive trauma, intracranial bleed with mass effect, ischemic bowel in the face of significant cardiac pathology or multiple organ/system dysfunction</td>
</tr>
<tr>
<td>ASA VI</td>
<td>A declared brain-dead patient whose organs are being removed for donor purposes</td>
<td></td>
</tr>
</tbody>
</table>

*The addition of “E” denotes Emergency surgery: (An emergency is defined as existing when delay in treatment of the patient would lead to a significant increase in the threat to life or body part)
Appendix 1

References related to use of the ASA PS Classification System

1. Guidelines for the use of Sedasys by non-anesthesia trained proceduralist and nurse.
http://www.sedasys.com/

2. American College of Surgeons’ proposed guidelines for care of pediatric surgical patients.
Journal of the American College of Surgeons, 2014;218:479-48

3. Guidelines for local anesthesia cases in a major academic center. “Monitoring patients
receiving local anesthesia”, MGH, Perioperative Nursing, OR L. 16

4. Office Based Procedure guidelines

Appendix 2

Selected References Addressing Inter-Rater Reliability of the ASA PS Classification System

1. Owens WD, Fels JA, et al. ASA physical status classifications: A study of consistency of
ratings. Anesthesiology. 1978;49:239–43 (Editorial by Keats AS. The ASA Classification of

2. Haynes SR, Lawler PG. An assessment of the consistency of ASA physical status

3. Mak PH, Campbell RC et al. The ASA physical status classification: inter-observer

4. Aronson WL, McAuliffe MS, Miller K. Variability in the American Society of
Anesthesiologists Physical Status Classification Scale. AANA J. 2003;71:265–74

status classification in pediatric surgical patients. Paediatr Anaesth 2006;16:928-31

6. Burgoyne LL, Smeltzer MP. How well do pediatric anesthesiologists agree when assigning
ASA physical status classifications to their patients. Paediatr Anaesth 2007;17:956-62

7. Bernard PA, Makin CE et al. Variability of ASA physical status class assignment among

8. Cuvillon P, Nouvellon E et al. American Society of Anesthesiologists' physical status system:
a multicentre Francophone study to analyse reasons for classification disagreement. Eur J
Anaesthesiol 2011;28:742-7

9. McMillan M, Brearley J. Assessment of the variation in American Society of
Anesthesiologists Physical Status Classification assignment in small animal anaesthesia. Vet
Anaesth Analg. 2013 May;40(3):229-36

10. Sankar A, Johnson SR et al. Reliability of the American Society of Anesthesiologists physical